• 제목/요약/키워드: RNA virus

검색결과 820건 처리시간 0.025초

Nonstructural Protein 5B of Hepatitis C Virus

  • Lee, Jong-Ho;Nam, In Young;Myung, Heejoon
    • Molecules and Cells
    • /
    • 제21권3호
    • /
    • pp.330-336
    • /
    • 2006
  • Since its identification in 1989, hepatitis C virus has been the subject of extensive research. The biology of the virus and the development of antiviral drugs are closely related. The RNA polymerase activity of nonstructural protein 5B was first demonstrated in 1996. NS5B is believed to localize to the perinuclear region, forming a replicase complex with other viral proteins. It has a typical polymerase structure with thumb, palm, and finger domains encircling the active site. A de novo replication initiation mechanism has been suggested. To date, many small molecule inhibitors are known including nucleoside analogues, non-nucleoside analogues, and pyrophosphate mimics. NS5B interacts with other viral proteins such as core, NS3, 4A, 4B, and 5A. The helicase activity of NS3 seems necessary for RNA strand unwinding during replication, with other nonstructural proteins performing modulatory roles. Cellular proteins interacting with NS5B include VAMP-associated proteins, heIF4AII, hPLIC1, nucleolin, PRK2, ${\alpha}$-actinin, and p68 helicase. The interactions of NS5B with these proteins might play roles in cellular trafficking, signal transduction, and RNA polymerization, as well as the regulation of replication/translation processes.

Role of Intergenic and 3'-Proximal Noncoding Regions in Coat Protein Expression and Replication of Barley yellow dwarf virus PAV

  • Moon, Jae-Sun;Nancy K. McCoppin;Leslie L. Domier
    • The Plant Pathology Journal
    • /
    • 제17권1호
    • /
    • pp.22-28
    • /
    • 2001
  • Barley yellow dwarf virus PAV (BYDV-PAV) has a 5.7-kb positive-sense single-stranded RNA genome that contains six open reading frames (ORFs). BYDV-PAV produces three subgenomic RNAs (sgRNAs). The largest of which encodes the coat, 17-kDa, and readthrough proteins from two initiation codons. To investigate the role of intergenic and 3'-proximal noncoding regions (NCRs) in coat protein (CP) expression and BYDV-PAV replication, a full-length infectious cDNA of the RNA genome of an Illinois isolate of BYDV-PAV was constructed downstream of the Cauliflower mosaic virus-35S promoter. Linear DNA molecules of these cDNAs were infectious, expressed the 22-kDa CP, and produced both genomic RNA sgRNAs in ratios similar to those observed in protoplasts inoculated with viral RNA. The portion of 5'NCR of sgRNA1 between ORFs 2 and 3 was not required for, but enhanced translation of CP from ORF3. Mutants containing deletions in the NCR downstream of ORF5 failed to replicate in oat protoplasts. These results indicate that an intact 3$^1$NCR is required for BYDV-PAV replication.

  • PDF

C형 간염바이러스(HCV)의 NS5B RNA Replicase에 의해 활성이 유도되는 Hammerhead 리보자임에 의한 HCV 복제 억제 연구 (Inhibition of Hepatitis C Virus (HCV) Replication by Hammerhead Ribozyme Which Activity Can Be Allosterically Regulated by HCV NS5B RNA Replicase)

  • 이창호;이성욱
    • 미생물학회지
    • /
    • 제47권3호
    • /
    • pp.188-193
    • /
    • 2011
  • C형 간염바이러스(hepatitis C virus; HCV) 증식을 효과적이며 특이적으로 제어할 수 있는 유전산물로서, HCV 증식조절인자인 NS5B RNA replicase 존재에 의해 allosteric하게 활성이 유도될 수 있는 HCV internal ribosome entry site (IRES) 표적 hammerhead 리보자임을 개발하였다. 이러한 리보자임은 HCV IRES 염기서열 중 +382 nucleotide 자리를 인지하는 hammerhead 리보자임, NS5B RNA replicase와 특이적으로 결합하는 RNA aptamer 부위, 그리고 aptamer와 NS5B와의 결합에 의해 리보자임 활성을 유도할 수 있도록 구조적 변이를 전달할 수 있는 communication module 부위 등으로 구성되어 있다. 이러한 allosteric 리보자임에 의해 세포 배양에서 HCV의 replicon 복제가 효과적으로 억제됨을 실시간 PCR 분석을 통하여 관찰하였다. 특히, HCV 지놈을 표적하는 리보자임 단독, 또는 HCV NS5B에 대한 RNA aptamer 단독에 의한 HCV 복제 억제능보다 allosteric 리보자임에 의한 HCV 복제 억제능이 더 뛰어났다. 따라서 개발된 allosteric 리보자임은 HCV 증식의 효과적인 증식 억제 선도물질로 활용될 수 있을 것이다.

Improvement of RT-PCR Sensitivity for Fruit Tree Viruses by Small-scale dsRNA Extraction and Sodium Sulfite

  • Lee, Sin-Ho;Kim, Hyun-Ran;Kim, Jae-Hyun;Kim, Jeong-Soo
    • The Plant Pathology Journal
    • /
    • 제20권2호
    • /
    • pp.142-146
    • /
    • 2004
  • Woody plant tissues contain great amounts of phenolic compounds and polysaccharides. These substances inhibit the activation of reverse transcriptase and/or Taq polymerase in RT-PCR. The commonly used multiple-step protocols using several additives to diminish polyphenolic compounds during nucleic acid extraction are time consuming and laborious. In this study, sodium sulfite was evaluated as an additive for nucleic acid extraction from woody plants and the efficiency of RT-PCR assay of commercial nucleic acid extraction kits and small-scale dsRNA extraction was compared. Sodium sulfite was used as an inhibitor against polyphenolic oxidases and its effects were compared in RNA extraction by commercial extraction kit and small-scale double-stranded RNA (dsRNA) extraction method for RT-PCR. During nucleic acid extraction, addition of 0.5%-1.5%(w/v) of sodium sulfite to lysis buffer or STE buffer resulted in lighter browning by oxidation than extracts without sodium sulfite and improved the RT-PCR detection. When commercial RNA extraction kit was used, optimal concentrations of sodium sulfite were variable according to the tested plant. However, with dsRNA as RT-PCR template, sodium sulfite 1.5% in STE buffer improved the detection efficiency of Apple chlorotic leaf spot virus (ACLSV) and Apple stem grooving virus (ASGV) in fruit trees, and reduced the unspecific amplifications signi-ficantly. Furthermore, when viruses existed at low titers in host plant, small-scale dsRNA extractions were very reliable.

Structure and Function of the Influenza A Virus Non-Structural Protein 1

  • Han, Chang Woo;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권8호
    • /
    • pp.1184-1192
    • /
    • 2019
  • The influenza A virus is a highly infectious respiratory pathogen that sickens many people with respiratory disease annually. To prevent outbreaks of this viral infection, an understanding of the characteristics of virus-host interaction and development of an anti-viral agent is urgently needed. The influenza A virus can infect mammalian species including humans, pigs, horses and seals. Furthermore, this virus can switch hosts and form a novel lineage. This so-called zoonotic infection provides an opportunity for virus adaptation to the new host and leads to pandemics. Most influenza A viruses express proteins that antagonize the antiviral defense of the host cell. The non-structural protein 1 (NS1) of the influenza A virus is the most important viral regulatory factor controlling cellular processes to modulate host cell gene expression and double-stranded RNA (dsRNA)-mediated antiviral response. This review focuses on the influenza A virus NS1 protein and outlines current issues including the life cycle of the influenza A virus, structural characterization of the influenza A virus NS1, interaction between NS1 and host immune response factor, and design of inhibitors resistant to the influenza A virus.

Virus-induced Silencing of the WRKY1 Transcription Factor that Interacts with the SL1 Structure of Potato virus X Leads to Higher Viral RNA Accumulation and Severe Necrotic Symptoms

  • Park, Sang-Ho;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • 제28권1호
    • /
    • pp.40-48
    • /
    • 2012
  • $Potato$ $virus$ $X$ (PVX) replication is precisely regulated by regulatory viral sequences and by viral and/or host proteins. In a previous study, we identified a 54-kDa cellular tobacco protein that bound to a region within the first 46 nucleotides (nt) of the 5' non-translated region (NTR) of the viral genome. Optimal binding was dependent upon the presence of an ACCA sequence at nt 10-13. To identify host factors that bind to 5' NTR elements including AC-rich sequences as well as stemloop 1 (SL1), we used northwestern blotting and matrixassisted laser desorption/ionization time-of-flight mass spectrometry for peptide mass fingerprinting. We screened several host factors that might affect PVX replication and selected a candidate protein, $Nicotiana$ $tabacum$ WRKY transcription factor 1 (NtWRKY1). We used a $Tobacco$ $rattle$ $virus$ (TRV)-based virus-induced gene silencing (VIGS) system to investigate the role of NtWRKY1 in PVX replication. Silencing of $WRKY1$ in $Nicotiana$ $benthamiana$ caused lethal apical necrosis and allowed an increase in PVX RNA accumulation. This result could reflect the balancing of PVX accumulation in a systemic $N.$ $benthamiana$ host to maintain PVX survival and still produce a suitable appearance of mosaic and mottle symptoms. Our results suggest that PVX may recruit the WRKY transcription factor, which binds to the 5' NTR of viral genomic RNA and acts as a key regulator of viral infection.

Metatranscriptomic Analysis of Plant Viruses in Imported Pear and Kiwifruit Pollen

  • Lee, Hyo-Jeong;Jeong, Rae-Dong
    • The Plant Pathology Journal
    • /
    • 제38권3호
    • /
    • pp.220-228
    • /
    • 2022
  • Pollen is a vector for viral transmission. Pollenmediated viruses cause serious economic losses in the fruit industry. Despite the commercial importance of pollen-associated viruses, the diversity of such viruses is yet to be fully explored. In this study, we performed metatranscriptomic analyses using RNA sequencing to investigate the viral diversity in imported apple and kiwifruit pollen. We identified 665 virus-associated contigs, which corresponded to four different virus species. We identified one virus, the apple stem grooving virus, from pear pollen and three viruses, including citrus leaf blotch virus, cucumber mosaic virus, and lychnis mottle virus in kiwifruit pollen. The assembled viral genome sequences were analyzed to determine phylogenetic relationships. These findings will expand our knowledge of the virosphere in fruit pollen and lead to appropriate management of international pollen trade. However, the pathogenic mechanisms of pollen-associated viruses in fruit trees should be further investigated.

Biological Control of n Severe Viral Strain Using a Benign Viral Satellite RNA Associated with Cucumber mosaic virus

  • Montasser Magdy Shaban;Bader Al-Hamar;Bhardwai Radhika Guleri
    • The Plant Pathology Journal
    • /
    • 제22권2호
    • /
    • pp.131-138
    • /
    • 2006
  • Two strains of Cucumber mosaic virus (CMV) isolated in Kuwait were confirmed their infectivity based on symptomatology and host range on different cultivars of tomato (Lycopersicon esculentum), tobacco(Nicotiana tabacum L.) and squash (Cucurbita pepo). The pattern of symptoms differed for the two CMV strains in tomato and tobacco, showing severe stunting and mosaic symptoms with one strain designated KU2, and almost symptomless with the other strain designated KU1. A satellite RNA 5 (sat-RNA) was found to be associated with the KU1 strain and was characterized as a benign viral satellite RNA. Using reverse transcription and polymerase chain reaction (RT-PCR) with sat-RNA specific primers, an amplified PCR product of about 160bp was determined and analyzed by gel electrophoresis. This naturally occurring benign viral satellite RNA was successfully used as a biological control agent to protect tomato plants against the severe KU2 strain. Tomato plants grown in plant-growth chambers, were preinoculated with KU1 containing the benign viral satellite and then challenge inoculated with the severe KU2 strain at different time intervals. All plants challenged three weeks after preinoculation showed nearly complete protection from subsequent infection by the severe strain. This biological control technology using plant viruses was found protective and could be successfully established sooner after the preinoculation.

Analysis of Hepatitis C Virus Genotypes and RNA Quantitative Values in Cheonan, Korea from 2007 to 2016

  • Bishguurmaa Renchindorj;Bo Kyeung Jung;Joowon Park
    • 한국미생물·생명공학회지
    • /
    • 제50권3호
    • /
    • pp.422-429
    • /
    • 2022
  • The hepatitis C virus (HCV) genome contains a positive-sense single-stranded RNA molecule, and it is classified into 8 genotypes and 87 subtypes. Globally, over 350,000 people die from liver cirrhosis and hepatocellular carcinoma caused by HCV each year. Here, the genotype distribution of HCV was estimated in the population in Cheonan, Korea using Sanger sequencing. In addition, the correlation between HCV RNA level and genotype was assessed using real-time polymerase chain reaction (PCR); similarly, the correlation of HCV RNA level with isolation year (2007-2016) was determined using 463 consecutive serum samples obtained from patients at Dankook University Hospital, Cheonan, Korea. In 2007, genotype 1b (54.2%) was predominant, followed by genotypes 2a (41.7%), 1a (2.1%) and 3a (2.1%); whereas in 2016, the predominant genotype was 2a (49.0%), followed by genotypes 1b (46.9%), 3b (2%), and 4a (2%). Neither age nor sex was correlated with HCV genotype. Furthermore, the mean HCV RNA level decreased significantly from 2012 to 2016 (p < 0.05). However, no significant correlations between genotype and HCV RNA level were found. Overall, the findings revealed that genotypes 2a and 1b were the most common in Cheonan, and the prevalence of HCV genotype 1b tended to decrease over the past decade.

Molecular cloning of cDNAs for Korean garlic viruses

  • Choi, Jin-Nam;Ahn, Ji-Hoon;Choi, Yang-Do;Lee, Jong-Seob
    • Applied Biological Chemistry
    • /
    • 제36권4호
    • /
    • pp.315-317
    • /
    • 1993
  • To understand the molecular structure and pathogenesis mechanism of Korean garlic viruses (GV), virus particles were isolated from field-grown garlic leaves and RNA genome was isolated from them. It was used for constructing cDNA library for GV. Several cDNA clones for GV were isolated and classified into 4 different groups on the basis of cross Southern hybridization. Northern blot analysis of GV RNA with one of these cDNA clones shows that the clone is a cDNA for GV RNA.

  • PDF