• 제목/요약/키워드: RNA transcript

검색결과 301건 처리시간 0.027초

흰쥐의 시상하부외 지역에서의 Growth Hormone Releasing Hormone (GHRH) 유전자발현;뇌하수체내 국부인자로서 Lactotroph분화에 관여할 가능성에 대하여 (Extrahypothalamic Expression of Rat Growth Hormone Releasing Hormone (GHRH);a possible intrapituitary factor for lactotroph differentiation?)

  • 이성호
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제23권3호
    • /
    • pp.269-275
    • /
    • 1996
  • Biosynthesis and secretion of anterior pituitary hormones are under the control of specific hypothalamic stimulatory and inhibitory factors. Among them, Growth Hormone Releasing Hormone (GHRH) is the major stimulator of pituitary somatotrophs activating GH gene expression and secretion. Human GHRH is a polypeptide of 44 amino acids initially isolated from pancreatic tumors, and the gene for the hypothalamic form of GHRH is organized into 5 exons spanning over 10 kilobases (kb) on genomic DNA and encodes a messenger RNA of 700-750 nucleotides. Several neuropeptides classically associated with the hypothalamus have been found in the extrahypothalamic regions, suggesting the existence of novel sources, targets and functions. GHRH-like immunoreactivity has been found in several peripheral sites, including placenta, testis, and ovary, indicating that GHRH may also have regulatory roles in peripheral reproductive organs. Furthermore, higher molecular weight forms of the GHRH transcripts were identified from these organs (1.75 kb in testis; 1.75 and >3 kb in ovary). These tissue-specific expression of GHRH gene suggest the existence of unique regulatory mechanism of GHRH expression and function in these organs. In fact, placenta-specific and testis-specific promoters for GHRH transcripts which are located in about 10 kb upstream region of hypothalamic promoter were reported. The use of unique promoters in extrahypothalamic sites could be refered in a different control of GHRH gene and different functions of the translated products in these tissues. Somatotrophs and lactotrophs have been thought to be derived from a common bipotential progenitor, the somatolactotrophs, which give origins to either phenotypes. Although the precise mechanism responsible for the lactotroph differentiation in the anterior pituitary gland has not been yet clalified, there are several candidators for the generation of lactotrophs. In human, the presence of GHRH peptides with different size from authentic hypothalamic form in the normal anterior pituitary and several types of adenoma were demonstrated. Recently our group found the existence of immunoreactive GHRH and its transcript from the normal rat anterior pituitary (gonadotroph> somatotroph> lactotroph), and the GHRH treatment evoked the increased proliferation rate of anterior pituitary cells in vitro. The transgenic mouse models clearly shown that GHRH or NGF overexpression by anterior pituitary cells induced development of pituitary hyperplasia and adenomas particularly GH-oma and prolactinoma. Taken together, we hypothesize that the pituitary GHRH could serve not only as a modulator of hormone secretion but as a paracrine or autocrine regulator of anterior pituitary cell proliferation and differentiation. Interestingly enough, the expression of Pit-1 homeobox gene (the POU class transcription factor) was confined to somatotrophs, lactotrophs and somatolactotrophs in which GHRH receptors are expressed commonly. Concerning the mechanism of somatolactotroph and lactotroph differentiation in the anterior pituitary, we have focused following two possibilities; (1) changes in the relative levels or interactions of both hypothalamic and intrapituitary factors such as dopamine, VIP, somatostatin, NGF and GHRH; (2) alterations of GHRH-GHRH receptor signaling and Pit-1 activity may be the cause of lactotroph differentiation or pituitary hyperplasia and adenoma formation. Extensive further studies will be necessary to solve these complicated questions.

  • PDF

Metabolic engineering of Vit C: Biofortification of potato

  • Upadhyaya, Chandrama P.;Park, Se-Won
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2010년도 정기총회 및 추계학술발표회
    • /
    • pp.14-14
    • /
    • 2010
  • Vitamin C (ascorbic acid) is an essential component for collagen biosynthesis and also for the proper functioning of the cardiovascular system in humans. Unlike most of the animals, humans lack the ability to synthesize ascorbic acid on their own due to a mutation in the gene encoding the last enzyme of ascorbate biosynthesis. As a result, vitamin C must be obtained from dietary sources like plants. In this study, we have developed two different kinds of transgenic potato plants (Solanumtuberosum L. cv. Taedong Valley) overexpressing strawberry GalUR and mouse GLoase gene under the control of CaMV 35S promoter with increased ascorbic acid levels. Integration of the these genes in the plant genome was confirmed by PCR and Southern blotting. Ascorbic acid(AsA) levels in transgenic tubers were determined by high-performance liquid chromatography(HPLC). The over-expression of these genes resulted in 2-4 folds increase in AsA intransgenic potato and the levels of AsA were positively correlated with increased geneactivity. The transgenic lines with enhanced vitamin C content showed enhanced tolerance to abiotic stresses induced by methyl viologen(MV), NaCl or mannitol as compared to untransformed control plants. The leaf disc senescence assay showed better tolerance in transgenic lines by retaining higher chlorophyll as compared to the untransformed control plants. Present study demonstrated that the over-expression of these gene enhanced the level of AsA in potato tubers and these transgenics performed better under different abiotic stresses as compared to untransformed control. We have also investigated the mechanism of the abiotic stress tolerance upon enhancing the level of the ascorbate in transgenic potato. The transgenic potato plants overexpressing GalUR gene with enhanced accumulation of ascorbate were investigated to analyze the antioxidants activity of enzymes involved in the ascorbate-glutathione cycle and their tolerance mechanism against different abiotic stresses under invitro conditions. Transformed potato tubers subjected to various abiotic stresses induced by methyl viologen, sodium chloride and zinc chloride showed significant increase in the activities of superoxide dismutase(SOD, EC 1.15.1.1), catalase, enzymes of ascorbate-glutathione cycle enzymes such as ascorbate peroxidase(APX, EC 1.11.1.11), dehydroascorbate reductase(DHAR, EC 1.8.5.1), and glutathione reductase(GR, EC 1.8.1.7) as well as the levels of ascorbate, GSH and proline when compared to the untransformed tubers. The increased enzyme activities correlated with their mRNA transcript accumulation in the stressed transgenic tubers. Pronounced differences in redox status were also observed in stressed transgenic potato tubers that showed more tolerance to abiotic stresses when compared to untransformed tubers. From the present study, it is evident that improved to lerance against abiotic stresses in transgenic tubers is due to the increased activity of enzymes involved in the antioxidant system together with enhanced ascorbate accumulated in transformed tubers when compared to untransformed tubers. At moment we also investigating the role of enhanced reduced glutathione level for the maintenance of the methylglyoxal level as it is evident that methylglyoxal is a potent cytotoxic compound produced under the abiotic stress and the maintenance of the methylglyoxal level is important to survive the plant under stress conditions.

  • PDF

Microarray를 이용한 작약(芍藥)의 인간치은섬유모세포 유전자 발현 조절 연구 (Gene expression microarray analysis of Paeoniae radix on IL-$1{\beta}$-stimulated primary human gingival fibroblast)

  • 김경호;최영곤;홍연미;여수정;최지훈;김영홍;이제현;임사비나
    • 대한한의학회지
    • /
    • 제31권2호
    • /
    • pp.91-108
    • /
    • 2010
  • Background & Objective: The aim of this study was to investigate the effect of P. radix on the inflammatory related gene expression in IL-$1{\beta}$-stimulated primary human gingival fibroblast using Whole Transcript Sense Target (WT-ST). Method: Human gingival fibroblast was incubated with P. radix [100 or $200\;{\mu}g/ml$], and IL-$1{\beta}$ [$1ng/m{\ell}$] added an hour later. After 24h, total RNA was extracted using RNeasy Mini Kit and the whole gene expression patterns were performed using WT-ST Labeling $Assay^{(R)}$. Result: In the DEG results, 782 genes were up-regulated in the IL-$1{\beta}$-treated group as compared to control and among those, 43 genes were associated with inflammation. 981 genes were down-regulated after treatment with IL-$1{\beta}$ and of those 7 genes were associated with inflammation. 1439 genes were up-regulated after treatment with P. radix plus IL-$1{\beta}$-treated when compared to IL-$1{\beta}$-treated alone group and 1225 genes were down-regulated in the same condition. Among the down-regulated genes, 5 were associated with inflammation- and inhibitor genes such as GDF15 and LIF. In the analysis of the P. radix plus IL-$1{\beta}$-treated group, the most significant pathways were the cytokine-cytokine receptor interaction, toll-like receptor signaling, JAK-STAT signaling and tyrosine metabolism. The gene expression patterns in the P. radix $200{\mu}g/m{\ell}$ plus IL-$1{\beta}$-treated group appear to be more involved in the metabolism-related pathways than in the $100{\mu}g/m{\ell}$ plus IL-$1{\beta}$-treated group. Conclusion & Discussion: By microarray analysis of gene expression data, we are able to identify gene expression patterns associated with not only anti-inflammation effect but also transcription function of P. radix.

재조합 HCCS-1 아데노바이러스를 이용한 구강암 세포주의 세포사멸 유발 (INDUCTION OF APOPTOSIS IN ORAL CANCER CELL LINE THROUGH AN RECOMBINANT HCCS-1 ADENOVIRUS)

  • 김창현;이동주;이일규;김명진;김진우;표성운
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제31권4호
    • /
    • pp.306-311
    • /
    • 2005
  • Despite advances in surgery, radiotherapy, and chemotherapy, the survival of patients with oral squamous cell carcinoma has not significantly improved over the past several decades. Gene therapy is currently under investigation and shows us new possibility of cancer curing method. This experiment was undergone to find out the cell growth inhibition effect and evidence of apoptosis by HCCS-1(human cervical cancer suppressor-1), one of the candidates of tumor suppressor gene, transducted to human oral cancer cell line. To determine the efficiency of the adenovirus as a gene delivery vector cell line was transducted with LacZ gene and analysed with X-gal staining. Northern blot was performed to confirm the transfection with HSCC-1 gene and cell viability was assessed by cell cytotoxicity assay using cell count kit(CCK). To show the evidence of apoptosis, DNA fragmentation assay and flow cytometry(FACS) were performed. We had successfully construct the recombinant HSCC-1 adenovirus(Ad5CMV-HCCS-1), and importation efficiency was 20% at 2 MOI(multiplicity of infection), 80% at 20 MOI. Northern blot analysis showed that a single 0.6kb mRNA transcript was expressed in Ad5CMV-HCCS-1 transducted cell lines. As a result of CCK, when comparing to control subjects, transducted group showed 50% growth inhibition. In DNA fragmentation assay, according to increasing of MOI, DNA volume was diminished. In FACS analysis, DNA distribution showed fragmentation. This results imply that HCCS-1gene has growth inhibition effect in human oral cancer cell lines through apoptosis induction.

남성과 여성에서 XIST 유전자의 후성학적 비교 연구 (Epigenetic Study of XIST Gene from Female and Male Cells by Pyrosequencing)

  • 김환희;윤여진;송민애;이수만
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제37권1호
    • /
    • pp.25-31
    • /
    • 2010
  • 목 적: X 염색체 불활성화는 여성과 남성 사이에 X 염색체의 유전자 발현 유지를 위해 여성의 X 염색체 중 하나가 불활성화 되는 현상이다. 이러한 X 염색체 불활성화는 해독되지 않는 XIST 유전자에 의해 조절된다. XIST 유전자는 오직 불활성화된 X 염색체 에서만 발현되고, 활성화된 X 염색체 에서는 발현되지 않는다. 따라서 체세포에서 활성화된 X 염색체의 XIST 유전자는 promoter 부분이 메틸화 되어있고, 불활성화된 X 염색체에서는 메틸화가 거의 되어 있지 않다. 연구방법: 본 연구에서는 정상 여성과 정상 남성의 XIST 유전자의 promoter와 5'-end 지역의 메틸화 차이를 측정하기 위해 정상여성과 남성의 혈액에서 DNA를 추출하여 파이로시퀀싱 (Pyrosequencing) 방법을 통해 XIST 유전자의 총 8부분의 CpG 영역 (-1696, -1679, -1475, -1473, -1469, +947, +956, +971)을 분석하였다. 결 과: 총 8부분의 CpG 영역을 분석한 결과, promoter 부분인 CpG 1-5 영역 (-1696, -1679, -1475, -1473, -1469)에서는 여성과 남성의 메틸화 정도에 차이가 없었다. 그러나 5'-end 부분인 CpG6-8 영역 (+947, +956, +971)에서는 여성이 45.2% 49.9% 44.2%, 남성이 90.6%, 96.7%, 87.8%으로 메틸화 정도가 차이를 나타냈다. 결 론: 따라서 본 연구에 사용한 방법은 XIST 유전자의 메틸화 패턴의 차이를 기존의 방법보다 신속하고 정확하게 분석할 수 있다는 장점이 있기 때문에 유용하게 사용될 수 있을 것이다.

Rice OsACDR1 (Oryza sativa Accelerated Cell Death and Resistance 1) Is a Potential Positive Regulator of Fungal Disease Resistance

  • Kim, Jung-A;Cho, Kyoungwon;Singh, Raksha;Jung, Young-Ho;Jeong, Seung-Hee;Kim, So-Hee;Lee, Jae-eun;Cho, Yoon-Seong;Agrawal, Ganesh K.;Rakwal, Randeep;Tamogami, Shigeru;Kersten, Birgit;Jeon, Jong-Seong;An, Gynheung;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • 제28권5호
    • /
    • pp.431-439
    • /
    • 2009
  • Rice Oryza sativa accelerated cell death and resistance 1 (OsACDR1) encodes a putative Raf-like mitogen-activated protein kinase kinase kinase (MAPKKK). We had previously reported upregulation of the OsACDR1 transcript by a range of environmental stimuli involved in eliciting defense-related pathways. Here we apply biochemical, gain and loss-of-function approaches to characterize OsACDR1 function in rice. The OsACDR1 protein showed autophosphorylation and possessed kinase activity. Rice plants overexpressing OsACDR1 exhibited spontaneous hypersensitive response (HR)-like lesions on leaves, upregulation of defense-related marker genes and accumulation of phenolic compounds and secondary metabolites (phytoalexins). These transgenic plants also acquired enhanced resistance to a fungal pathogen (Magnaporthe grisea) and showed inhibition of appressorial penetration on the leaf surface. In contrast, loss-of-function and RNA silenced OsACDR1 rice mutant plants showed downregulation of defense-related marker genes expressions and susceptibility to M. grisea. Furthermore, transient expression of an OsACDR1:GFP fusion protein in rice protoplast and onion epidermal cells revealed its localization to the nucleus. These results indicate that OsACDR1 plays an important role in the positive regulation of disease resistance in rice.

Selection of Reference Genes for Real-time Quantitative PCR Normalization in the Process of Gaeumannomyces graminis var. tritici Infecting Wheat

  • Xie, Li-hua;Quan, Xin;Zhang, Jie;Yang, Yan-yan;Sun, Run-hong;Xia, Ming-cong;Xue, Bao-guo;Wu, Chao;Han, Xiao-yun;Xue, Ya-nan;Yang, Li-rong
    • The Plant Pathology Journal
    • /
    • 제35권1호
    • /
    • pp.11-18
    • /
    • 2019
  • Gaeumannomyces graminis var. tritici is a soil borne pathogenic fungus associated with wheat roots. The accurate quantification of gene expression during the process of infection might be helpful to understand the pathogenic molecular mechanism. However, this method requires suitable reference genes for transcript normalization. In this study, nine candidate reference genes were chosen, and the specificity of the primers were investigated by melting curves of PCR products. The expression stability of these nine candidates was determined with three programs-geNorm, Norm Finder, and Best Keeper. $TUB{\beta}$ was identified as the most stable reference gene. Furthermore, the exopolygalacturonase gene (ExoPG) was selected to verify the reliability of $TUB{\beta}$ expression. The expression profile of ExoPG assessed using $TUB{\beta}$ agreed with the results of digital gene expression analysis by RNA-Seq. This study is the first systematic exploration of the optimal reference genes in the infection process of Gaeumannomyces graminis var. tritici.

Comparative metabolomic analysis in horses and functional analysis of branched chain (alpha) keto acid dehydrogenase complex in equine myoblasts under exercise stress

  • Jeong-Woong, Park;Kyoung Hwan, Kim;Sujung, Kim;Jae-rung, So;Byung-Wook, Cho;Ki-Duk, Song
    • Journal of Animal Science and Technology
    • /
    • 제64권4호
    • /
    • pp.800-811
    • /
    • 2022
  • The integration of metabolomics and transcriptomics may elucidate the correlation between the genotypic and phenotypic patterns in organisms. In equine physiology, various metabolite levels vary during exercise, which may be correlated with a modified gene expression pattern of related genes. Integrated metabolomic and transcriptomic studies in horses have not been conducted to date. The objective of this study was to detect the effect of moderate exercise on the metabolomic and transcriptomic levels in horses. In this study, using nuclear magnetic resonance (NMR) spectroscopy, we analyzed the concentrations of metabolites in muscle and plasma; we also determined the gene expression patterns of branched chain (alpha) keto acid dehydrogenase kinase complex (BCKDK), which encodes the key regulatory enzymes in branched-chain amino acid (BCAA) catabolism, in two breeds of horses, Thoroughbred and Jeju, at different time intervals. The concentrations of metabolites in muscle and plasma were measured by 1H NMR (nuclear magnetic resonance) spectroscopy, and the relative metabolite levels before and after exercise in the two samples were compared. Subsequently, multivariate data analysis based on the metabolic profiles was performed using orthogonal partial least square discriminant analysis (OPLS-DA), and variable important plots and t-test were used for basic statistical analysis. The stress-induced expression patterns of BCKDK genes in horse muscle-derived cells were examined using quantitative reverse transcription polymerase chain reaction (qPCR) to gain insight into the role of transcript in response to exercise stress. In this study, we found higher concentrations of aspartate, leucine, isoleucine, and lysine in the skeletal muscle of Jeju horses than in Thoroughbred horses. In plasma, compared with Jeju horses, Thoroughbred horses had higher levels of alanine and methionine before exercise; whereas post-exercise, lysine levels were increased. Gene expression analysis revealed a decreased expression level of BCKDK in the post-exercise period in Thoroughbred horses.

HL6O 세포주의 분화 시 감소 특성을 보이는 Glutathione S-Transferase의 클로닝 (Cloning of a Glutathione S-Transferase Decreasing During Differentiation of HL60 Cell Line)

  • 김재철;박인규;이규보;손상균;김문규;김정철
    • Radiation Oncology Journal
    • /
    • 제17권2호
    • /
    • pp.151-157
    • /
    • 1999
  • 목적 : HL60 세포주에서 PMA(phorbol 12-myrisate 13-acetate) 및 DMSO(dlmethyisulfoxlde) 에 의해 분화가 유도될 때 감소되는 특성을 보이는 K872 클론에 대한 염기 서열, 조직 분포, 단백 분리 등을 시행하였다. 재료 및 방법 QIA plasmid extraction kit(Qiagen GmbH, Germany)를 이용하여 사람의 모유두 세포 pBluescript phagemid cDNA library로부터 K872 클론을 추출하였다. Sanger's dideoxy nucleotide chain-termination method을 이용하여, 추출한 K872 클론의 염기 서열을 분석하였다. BLAST(Basic Local Alignment Search Tools) 프로그램으로 유전자은행의 염기 서열과의 상동성을 검색하였다. K872 클론으로 만든 probe로 다양한 인간 조직 및 암세포주로부터 분리한 RNA에 대하여 nothern blot을 시행하였다. His-Patch Thifusion expression system을 이용하여 대장균 배지에 0.1mM IPTG(Isopropyl-$\beta$-thlogalactopyranoslde) 를 첨가해서 결합단백의 유전자 발현을 유도하였다. 결합단백이 함유된 용출액을 SDS-PAGE에 걸어서 발현된 단백을 확인하였다. 결과 : K872 클론은 675개의 코딩 영역과 280개의 코딩과 관련없는 영역으로 구성된 1006개의 염기로 구성됨을 관찰하였다. 해독틀로 추정되는 부분은 시작 코돈을 포함하여 길6개의 아미노산을 형성하고 단백 산물의 분자량은 25,560 Da으로 추정되었다. 추정 아미노산 배열은 쥐의 glutathlone S-transferase kappa 1(rGSTKl) 의 아미노산 배열과 70$\%$의 상동성을 보였다. nothern blot에 따른 발현 양상은 심장, 수의근, 말초혈액 백혈구 등의 조직에서 높은 발현을 보였으며 방사선 내성과 관련지어 볼 때 대장암 및 흑색종 세포주에서 발현이 높았던 점은 특기할 만하였다. 결론 : 상동성 검색 결과 K872 유전자는 항암제 및 방사선 내성과 관련이 있는 rGSTK1에 대한 사람의 상동유전자로 사료되며 향후 이와 관련한 기능 분석이 필요할 것으로 사료된다

  • PDF

Lipopolysaccharide로 활성화된 RAW264.7세포에서 염증반응사이토카인 발현에 대한 Epigallocatechin gallate의 억제효능연구 (Suppressive Effects of Epigallocatechin Gallate Pretreatment on the Expression of Inflammatory Cytokines in RAW264.7 Cells Activated by Lipopolysaccharide)

  • 서은지;고준;김지은;고은경;송성화;성지은;박찬규;이현아;김동섭;손홍주;이충열;이희섭;황대연
    • 생명과학회지
    • /
    • 제25권9호
    • /
    • pp.961-969
    • /
    • 2015
  • Epigallocatechin gallate (EGCG)는 녹차(Camellia sinensis, green tea)에 포함되어 있는 대표적인 카테킨(Catechin)으로, 당뇨(diabetes), 신경퇴행성 질환(neurodegenerative disorders), 암(cancer), 심혈관계 질환(cardiovascular disease), 비만(obesity) 등의 다양한 임상질환에 우수한 치료효과를 나타내는 것으로 알려왔다. 본 연구에서는 EGCG가 LPS (Lipopolysaccaride)로 자극된 RAW264.7 세포의 염증억제과정에서 Nitric oxide (NO)관련인자와 사이토카인 발현에 미치는 영향을 분석하기 위해, NO농도, inducible NO synthase (iNOS) 발현량, TNF-α, IL-1β, IL-6, IL-10 사이토카인의 발현량을 분석하였다. 먼저, EGCG (100-400 μM)를 처리한 Raw264.7 세포에서 특이적인 독성이 나타나지 않음을 확인하였으며, 이후 Raw264.7 세포에 4가지 다른 농도(0.1, 0.5, 1.0, 5.0 μg/ml)의 LPS를 처리한 후 MTT분석, NO농도분석, IL-6농도분석을 실시하여, 염증을 유발할 수 있는 최적 LPS 농도를 1 μg/ml로 설정하였다. NO농도를 분석한 결과, LPS를 처리한 그룹이 No그룹에 비하여 급속히 증가하여 63 μmol/l까지 증가하였으나 400 μM EGCG를 처리한 그룹에서만 68.2% 정도 감소하였으며, 동시에 iNOS 발현 양상은 200, 400 μM EGCG/LPS 처리 그룹에서 각각 12.3%, 17.4% 감소하였다. 또한, 감소비율에는 차이가 있었으나, anti-inflammatory 사이토카인(IL-1β, TNF-α)과 pro-inflammatory 사이토카인(IL-10)의 발현은 EGCG/LPS 처리에 따라 유의적으로 감소하였다. 그러나, IL-6단백질과 mRNA 농도는 Vehicle/LPS 처리 그룹과 EGCG/LPS 처리 그룹에서 유의적인 차이를 나타내지 않았다. 따라서, 본 연구의 결과는 EGCG가 LPS의 자극에 의해 활성화된 Raw264.7 세포를 효과적으로 억제하는 효능을 나타냄을 제시하고 있으며, 이러한 과정에 사이토카인들이 서로 다르게 특이적 반응을 중계함을 제시하고 있다.