• 제목/요약/키워드: RNA sequencing

검색결과 1,189건 처리시간 0.028초

효소적으로 증폭된 DNA의 염기배열법과 16S like 리보좀 유전자의 증폭 및 염기배열결정에의 응용 (Sequencing of Enzymatically Amplified DNA and Its Application to 16S Like Ribosomal Gene Amplification and Sequencing)

  • 이재동;주우홍
    • 생명과학회지
    • /
    • 제2권2호
    • /
    • pp.108-119
    • /
    • 1992
  • 근년에 개발된 효소적인 DNA증폭법을 이용하면 일차구조상의 단편적인 정보만 알면 단 수시간내 해석에 필요한 양의 DNA가 증폭되어 cDNA의 염기배열결정의 신속화, 간편화가 가능하게 되었다. 그러므로 유전자증폭법으로써 PCR법에 관해 기술한다. 그리고 리보좀 RNA는 분자시계로서 생물의 계통을 논하는 데에 있어서는 최적의 조건을 갖춘 고분자화합물이다. 이에 PCR법을 이용한 16S like 리보좀DNA의 증폭법을 다루고, PCR증폭산물의 염기배열결정법에 대해 서술한다. 또한 인위적인 leading error 등을 배제하고 신속한 자동해독과 시간적인 절약이 자동 DNA sequencer의 개발과 시판으로 가능하게 되어 cDNA의 형광색소표식 염기배열결정법에 대해서도 서술한다.

  • PDF

소 바이러스성 설사병 바이러스 gp53 항원부위 유전자의 재조합 및 염기서열 연구 (Molecular cloning and nucleotide sequencing of bovine viral diarrhea virus gp53 antigenic region)

  • 여상건
    • 대한수의학회지
    • /
    • 제35권2호
    • /
    • pp.287-295
    • /
    • 1995
  • Molecular cloning and nucleotide sequencing were undertaken for the RNA genome of gp53 antigenic region in cytopathic Singer strain of bovine viral diarrhea virus. The cloned cDNA was 939 nucleotides in length having a base composition of 31.0% A, 19.6% C, 25.5% G and 24.0% T. The sequence was corresponded to approximately 77.8%(817 bases) of predicted gp53 region and 122 bases after 3'end of gp53 region in the Singer strain when compared with NADL strain of known sequence. A single open reading frame was found in the sequence of 2nd frame and was deduced as encoding 312 amino acids.

  • PDF

유전자 및 유전체 연구 기술과 동향 (Trend and Technology of Gene and Genome Research)

  • 이진성;김기환;서동상;강석우;황재삼
    • 한국잠사곤충학회지
    • /
    • 제42권2호
    • /
    • pp.126-141
    • /
    • 2000
  • A major step towards understanding of the genetic basis of an organism is the complete sequence determination of all genes in target genome. The nucleotide sequence encoded in the genome contains the information that specifies the amino acid sequence of every protein and functional RNA molecule. In principle, it will be possible to identify every protein resposible for the structure and function of the body of the target organism. The pattern of expression in different cell types will specify where and when each protein is used. The amino acid sequence of the proteins encoded by each gene will be derived from the conceptional translation of the nucleotide sequence. Comparison of these sequences with those of known proteins, whose sequences are sorted in database, will suggest an approximate function for many proteins. This mini review describes the development of new sequencing methods and the optimization of sequencing strategies for whole genome, various cDNA and genomic analysis.

  • PDF

생물학적 인 제거용 연속회분식 반응기에서의 미생물 분포 조사

  • 전체옥;박종문
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.77-80
    • /
    • 2000
  • Various analytical methods such as electron microscopy, quinone analysis, and 16S rDNA sequencing studies were used to investigate the microbial communities and to identify the microorganisms responsible for enhanced biological phosphorus removal (EBPR) in an anaerobic/aerobic sequencing batch reactor (SBR) fed with acetate. Electron photomicrographs showed that oval-shaped microorganisms of about $0.7\;{\sim}\;1\;{\mu}m$ in diameter dominated the microbial sludge. These microorganisms contained polyphosphate granules and glycogen inclusions, which suggests that they are a kind of phosphorus accumulating organism. Quinone and 16S rRNA sequence analyses showed that the members of Proteobacteria beta subclass were the most abundant species, which were affiliated with the Rhodocyclus-likes group. Phylogenetic analysis revealed that the two dominating clones of the beta subclass were most distantly related to Propionivibrio dicarboxylicus DSM 5885 and Rhodocyclus tenuis DSM 109 with about 95% and 96% sequence similarity, respectively. Therefore, it was concluded that the oval-shaped organisms related to the Rhodocyclus-likes group are likely to be responsible for biological phosphorus removal in SBR operation supplied with acetate.

  • PDF

미꾸라지 성장 호르몬 염기 서열의 특성에 대하여 (Characterization of growth hormone-like sequence of loach, Misgurnus mizolepis)

  • 김진경;송영환
    • 한국어병학회지
    • /
    • 제7권2호
    • /
    • pp.95-103
    • /
    • 1994
  • 미꾸라지의 성장호르몬 유전자를 분리하기 위하여 미꾸라지의 cDNA library를 준비하였다. total RNA는 미꾸라지의 뇌하수체로부터 얻었으며 oligo (dT)-coupled magnetic bead를 이용하여 total RNA로부터 mRNA를 순수분리하였다. 정제된 mRNA는 cDNA를 합성하기 위한 기질로 사용하였으며, 합성된 cDNA는 EcoRV/Smal으로 절단된 pBlueKS+ plasmid vector에 삽입하였다. 모든 ligation 반응용액을 E. coli, JM109 균주에 형질전환을 유도하였으며 형질전환 효율을 최대화시키기 위하여 전기천공법을 이용하였다. 얻어진 모든 형질전환주들을 DIG로 표지된 Tilapia의 성장호르몬 유전자를 이용하여 고밀도 colony hybridization 에 의하여 검색하였다. 양성반응을 나타내는 10개의 형질전환주를 분리하여 2차 colony hybridization 및 southern hybridization에 의하여 성장호르몬 유전자가 cloning 되었음을 확인하였다. 10 개의 형질전환주 중 하나인 pCGH1을 probe로 사용한 Tilapia 성장 호르몬 유전자의 염기서열과 비교분석하였으며 53.2%의 유사성을 나타냄을 확인하였다.

  • PDF

국내 기장 및 수수의 바이러스병 발생 조사 (A Survey of Viral Diseases of Proso Millet (Panicum miliaceum L.) and Sorghum (Sorghum bicolor L.) in South Korea)

  • 민현근;박충열;이홍규;염윤아;오종희;김봉섭;임승모;윤영남;이수헌
    • 식물병연구
    • /
    • 제23권3호
    • /
    • pp.262-267
    • /
    • 2017
  • 2015년부터 2016년까지 국내 5개 지역에서 기장 101점, 수수 200점의 시료를 채집하였다. 채집한 시료에 대해 paired-end RNA sequencing, RT-PCR 진단을 수행하였다. 그 결과, 경상도에서 채집한 수수에서 Rice black-streaked dwarf virus (RBSDV)가 검출되었으며, RBSDV, Rice stripe virus (RSV), Barley virus G (BVG), Cereal yellow dwarf virus (CYDV) 4종의 바이러스가 기장에서 검출되었다. 기장에서 검출된 4종의 바이러스 중 RSV와 RBSDV는 경상도에서 채집한 시료에서 높은 감염률을 보였다. 반면, BVG는 5개 지역에서 모두 감염이 확인되었으며, 이미 전국적으로 분포되어 있는 바이러스인 것으로 보인다. 본 연구에서는 국내 기장과 수수에서 RBSDV를 처음으로 동정하였으며, 수수에서 검출된 CYDV는 기존에 보고된 CYDV 분리주와 상동성이 상대적으로 낮은 것으로 보아 Polerovirus 속의 신종 바이러스로 예상된다.

Genomic and Proteomic Analysis of Microbial Function in the Gastrointestinal Tract of Ruminants - Review -

  • White, Bryan A.;Morrison, Mark
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권6호
    • /
    • pp.880-884
    • /
    • 2001
  • Rumen microbiology research has undergone several evolutionary steps: the isolation and nutritional characterization of readily cultivated microbes; followed by the cloning and sequence analysis of individual genes relevant to key digestive processes; through to the use of small subunit ribosomal RNA (SSU rRNA) sequences for a cultivation-independent examination of microbial diversity. Our knowledge of rumen microbiology has expanded as a result, but the translation of this information into productive alterations of ruminal function has been rather limited. For instance, the cloning and characterization of cellulase genes in Escherichia coli has yielded some valuable information about this complex enzyme system in ruminal bacteria. SSU rRNA analyses have also confirmed that a considerable amount of the microbial diversity in the rumen is not represented in existing culture collections. However, we still have little idea of whether the key, and potentially rate-limiting, gene products and (or) microbial interactions have been identified. Technologies allowing high throughput nucleotide and protein sequence analysis have led to the emergence of two new fields of investigation, genomics and proteomics. Both disciplines can be further subdivided into functional and comparative lines of investigation. The massive accumulation of microbial DNA and protein sequence data, including complete genome sequences, is revolutionizing the way we examine microbial physiology and diversity. We describe here some examples of our use of genomics- and proteomics-based methods, to analyze the cellulase system of Ruminococcus flavefaciens FD-1 and explore the genome of Ruminococcus albus 8. At Illinois, we are using bacterial artificial chromosome (BAC) vectors to create libraries containing large (>75 kbases), contiguous segments of DNA from R. flavefaciens FD-1. Considering that every bacterium is not a candidate for whole genome sequencing, BAC libraries offer an attractive, alternative method to perform physical and functional analyses of a bacterium's genome. Our first plan is to use these BAC clones to determine whether or not cellulases and accessory genes in R. flavefaciens exist in clusters of orthologous genes (COGs). Proteomics is also being used to complement the BAC library/DNA sequencing approach. Proteins differentially expressed in response to carbon source are being identified by 2-D SDS-PAGE, followed by in-gel-digests and peptide mass mapping by MALDI-TOF Mass Spectrometry, as well as peptide sequencing by Edman degradation. At Ohio State, we have used a combination of functional proteomics, mutational analysis and differential display RT-PCR to obtain evidence suggesting that in addition to a cellulosome-like mechanism, R. albus 8 possesses other mechanisms for adhesion to plant surfaces. Genome walking on either side of these differentially expressed transcripts has also resulted in two interesting observations: i) a relatively large number of genes with no matches in the current databases and; ii) the identification of genes with a high level of sequence identity to those identified, until now, in the archaebacteria. Genomics and proteomics will also accelerate our understanding of microbial interactions, and allow a greater degree of in situ analyses in the future. The challenge is to utilize genomics and proteomics to improve our fundamental understanding of microbial physiology, diversity and ecology, and overcome constraints to ruminal function.

Comparison of Fecal Microbiota of Mongolian and Thoroughbred Horses by High-throughput Sequencing of the V4 Region of the 16S rRNA Gene

  • Zhao, Yiping;Li, Bei;Bai, Dongyi;Huang, Jinlong;Shiraigo, Wunierfu;Yang, Lihua;Zhao, Qinan;Ren, Xiujuan;Wu, Jing;Bao, Wuyundalai;Dugarjaviin, Manglai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권9호
    • /
    • pp.1345-1352
    • /
    • 2016
  • The hindgut of horses is an anaerobic fermentative chamber for a complex and dynamic microbial population, which plays a critical role in health and energy requirements. Research on the gut microbiota of Mongolian horses has not been reported until now as far as we know. Mongolian horse is a major local breed in China. We performed high-throughput sequencing of the 16S rRNA genes V4 hypervariable regions from gut fecal material to characterize the gut microbiota of Mongolian horses and compare them to the microbiota in Thoroughbred horses. Fourteen Mongolian and 19 Thoroughbred horses were used in the study. A total of 593,678 sequence reads were obtained from 33 samples analyzed, which were found to belong to 16 phyla and 75 genera. The bacterial community compositions were similar for the two breeds. Firmicutes (56% in Mongolian horses and 53% in Thoroughbred horses) and Bacteroidetes (33% and 32% respectively) were the most abundant and predominant phyla followed by Spirochaete, Verrucomicrobia, Proteobacteria, and Fibrobacteres. Of these 16 phyla, five (Synergistetes, Planctomycetes, Proteobacteria, TM7, and Chloroflexi) were significantly different (p<0.05) between the two breeds. At the genus level, Treponema was the most abundant genus (43% in Mongolian horses vs 29% in Thoroughbred horses), followed by Ruminococcus, Roseburia, Pseudobutyrivibrio, and Anaeroplasma, which were detected in higher distribution proportion in Mongolian horses than in Thoroughbred horses. In contrast, Oscillibacter, Fibrobacter, Methanocorpusculum, and Succinivibrio levels were lower in Mongolian horses. Among 75 genera, 30 genera were significantly different (p<0.05) between the two breeds. We found that the environment was one of very important factors that influenced horse gut microbiota. These findings provide novel information about the gut microbiota of Mongolian horses and a foundation for future investigations of gut bacterial factors that may influence the development and progression of gastrointestinal disease in horses.

국내에 발생하는 조 바이러스의 종류 및 발생 실태 (Occurrence of Viruses Infecting Foxtail Millet (Setaria italica) in South Korea)

  • 박충열;민현근;이홍규;염윤아;오종희;김봉섭;배대현;윤영남;이수헌
    • 식물병연구
    • /
    • 제23권1호
    • /
    • pp.69-74
    • /
    • 2017
  • 2015년, 조 바이러스 발생양상을 구명하기 위하여 전국적인 조사를 실시하였다. 주요재배단지 7개 지역에서 이상 증상과 바이러스 병징을 보이는 식물체 100점을 수집하여, RT-PCR 진단과 RNA sequencing 방법을 이용하여 전체 4종의 바이러스를 동정하였다. 수집한 시료에서는 Barley virus G (BVG)가 10점, Rice stripe virus (RSV)는 4점, Northern cereal mosaic virus (NCMV), Sugarcane yellow leaf virus (ScYLV)가 각각 1점씩 검출되었다. 이들중에서 BVG와 NCMV는 국내 조에서 첫 발생보고이며, ScYLV는 Polerovirus속의 신종으로 예상된다. 본 연구결과는 조 식물체의 무병종자와 저항성 품종개발을 위한 기초연구 자료로 이용 가능할 것으로 생각된다.

Dynamic changes of yak (Bos grunniens) gut microbiota during growth revealed by polymerase chain reaction-denaturing gradient gel electrophoresis and metagenomics

  • Nie, Yuanyang;Zhou, Zhiwei;Guan, Jiuqiang;Xia, Baixue;Luo, Xiaolin;Yang, Yang;Fu, Yu;Sun, Qun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권7호
    • /
    • pp.957-966
    • /
    • 2017
  • Objective: To understand the dynamic structure, function, and influence on nutrient metabolism in hosts, it was crucial to assess the genetic potential of gut microbial community in yaks of different ages. Methods: The denaturing gradient gel electrophoresis (DGGE) profiles and Illumina-based metagenomic sequencing on colon contents of 15 semi-domestic yaks were investigated. Unweighted pairwise grouping method with mathematical averages (UPGMA) clustering and principal component analysis (PCA) were used to analyze the DGGE fingerprint. The Illumina sequences were assembled, predicted to genes and functionally annotated, and then classified by querying protein sequences of the genes against the Kyoto encyclopedia of genes and genomes (KEGG) database. Results: Metagenomic sequencing showed that more than 85% of ribosomal RNA (rRNA) gene sequences belonged to the phylum Firmicutes and Bacteroidetes, indicating that the family Ruminococcaceae (46.5%), Rikenellaceae (11.3%), Lachnospiraceae (10.0%), and Bacteroidaceae (6.3%) were dominant gut microbes. Over 50% of non-rRNA gene sequences represented the metabolic pathways of amino acids (14.4%), proteins (12.3%), sugars (11.9%), nucleotides (6.8%), lipids (1.7%), xenobiotics (1.4%), coenzymes, and vitamins (3.6%). Gene functional classification showed that most of enzyme-coding genes were related to cellulose digestion and amino acids metabolic pathways. Conclusion: Yaks' age had a substantial effect on gut microbial composition. Comparative metagenomics of gut microbiota in 0.5-, 1.5-, and 2.5-year-old yaks revealed that the abundance of the class Clostridia, Bacteroidia, and Lentisphaeria, as well as the phylum Firmicutes, Bacteroidetes, Lentisphaerae, Tenericutes, and Cyanobacteria, varied more greatly during yaks' growth, especially in young animals (0.5 and 1.5 years old). Gut microbes, including Bacteroides, Clostridium, and Lentisphaeria, make a contribution to the energy metabolism and synthesis of amino acid, which are essential to the normal growth of yaks.