• Title/Summary/Keyword: RNA replicase complex

Search Result 3, Processing Time 0.02 seconds

Interaction of Stomatin with Hepatitis C Virus RNA Polymerase Stabilizes the Viral RNA Replicase Complexes on Detergent-Resistant Membranes

  • Kim, Jung-Hee;Rhee, Jin-Kyu;Ahn, Dae-Gyun;Kim, Kwang Pyo;Oh, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1744-1754
    • /
    • 2014
  • The hepatitis C virus (HCV) RNA genome is replicated by an RNA replicase complex (RC) consisting of cellular proteins and viral nonstructural (NS) proteins, including NS5B, an RNA-dependent RNA polymerase (RdRp) and key enzyme for viral RNA genome replication. The HCV RC is known to be associated with an intracellular membrane structure, but the cellular components of the RC and their roles in the formation of the HCV RC have not been well characterized. In this study, we took a proteomic approach to identify stomatin, a member of the integral proteins of lipid rafts, as a cellular protein interacting with HCV NS5B. Co-immunoprecipitation and co-localization studies confirmed the interaction between stomatin and NS5B. We demonstrated that the subcellular fraction containing viral NS proteins and stomatin displays RdRp activity. Membrane flotation assays with the HCV genome replication-competent subcellular fraction revealed that the HCV RdRp and stomatin are associated with the lipid raft-like domain of membranous structures. Stomatin silencing by RNA interference led to the release of NS5B from the detergent-resistant membrane, thereby inhibiting HCV replication in both HCV subgenomic replicon-harboring cells and HCV-infected cells. Our results identify stomatin as a cellular protein that plays a role in the formation of an enzymatically active HCV RC on a detergent-resistant membrane structure.

Nonstructural Protein 5B of Hepatitis C Virus

  • Lee, Jong-Ho;Nam, In Young;Myung, Heejoon
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.330-336
    • /
    • 2006
  • Since its identification in 1989, hepatitis C virus has been the subject of extensive research. The biology of the virus and the development of antiviral drugs are closely related. The RNA polymerase activity of nonstructural protein 5B was first demonstrated in 1996. NS5B is believed to localize to the perinuclear region, forming a replicase complex with other viral proteins. It has a typical polymerase structure with thumb, palm, and finger domains encircling the active site. A de novo replication initiation mechanism has been suggested. To date, many small molecule inhibitors are known including nucleoside analogues, non-nucleoside analogues, and pyrophosphate mimics. NS5B interacts with other viral proteins such as core, NS3, 4A, 4B, and 5A. The helicase activity of NS3 seems necessary for RNA strand unwinding during replication, with other nonstructural proteins performing modulatory roles. Cellular proteins interacting with NS5B include VAMP-associated proteins, heIF4AII, hPLIC1, nucleolin, PRK2, ${\alpha}$-actinin, and p68 helicase. The interactions of NS5B with these proteins might play roles in cellular trafficking, signal transduction, and RNA polymerization, as well as the regulation of replication/translation processes.

Interaction Study of Soybean mosaic virus Proteins with Soybean Proteins using the Yeast-Two Hybrid System

  • Seo, Jang-Kyun;Hwang, Sung-Hyun;Kang, Sung-Hwan;Choi, Hong-Soo;Lee, Su-Heon;Sohn, Seong-Han;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.23 no.4
    • /
    • pp.281-286
    • /
    • 2007
  • Interactions between viral proteins and host proteins are essential for virus replication. Especially, translation of viral genes completely depends on the host machinery. In potyviruses, interactions of genome-linked viral protein (VPg) with host translation factors including eIF4E, eIF(iso)4E, and poly(A)-binding protein (PABP) has previously been characterized. In this study, we investigated interactions between Soybean mosaic virus (SMV) viral proteins and host translation factors by yeast two-hybrid system. SMV VPg interacted with eIF4E, eIF(iso)4E, and PABP in yeast two-hybrid system, while SMV helper component proteinase (HC-pro) interacted with neither of those proteins. The interaction between SMV NIb and PABP was also detected. These results are consistent with those reported previously in other potyviruses. Interestingly, we found reproducible and specific interactions between SMV coat protein (CP) and PABP. Deletion analysis showed that the region of CP comprising amino acids 116 to 206 and the region of PABP comprising amino acids 520 to 580 are involved in CP/PABP interactions. Soybean library screening with SMV NIb by yeast two-hybrid assay also identified several soybean proteins including chlorophyll a/b binding preprotein, photo-system I-N subunit, ribulose 1,5-biphosphate carboxylase, ST-LSI protein, translation initiation factor 1, TIR-NBS type R protein, RNA binding protein, ubiquitin, and LRR protein kinase. Altogether, these results suggest that potyviral replicase may comprise a multi-protein complex with PABP, CP, and other host factors.