• Title/Summary/Keyword: RNA microarray

Search Result 327, Processing Time 0.034 seconds

Increased Expression of P2RY2, CD248 and EphB1 in Gastric Cancers from Chilean Patients

  • Aquea, Gisela;Bresky, Gustavo;Lancellotti, Domingo;Madariaga, Juan Andres;Zaffiri, Vittorio;Urzua, Ulises;Haberle, Sergio;Bernal, Giuliano
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.1931-1936
    • /
    • 2014
  • Background: Gastric cancer (GC) ranks as one of the major causes of mortality due to cancer worldwide. In Chile, it is currently the leading cause of cancer death. Identification of novel molecular markers that may help to improve disease diagnosis at early stages is imperative. Materials and Methods: Using whole-genome DNA microarrays we determined differential mRNA levels in fresh human GC samples compared to adjacent healthy mucosa from the same patients. Genes significantly overexpressed in GC were validated by RT-PCR in a group of 14 GC cases. Results: The genes CD248, NSD1, RAB17, ABCG8, Ephb1 and P2RY2 were detected as the top overexpressed in GC biopsies. P2RY2, Ephb1 and CD248 showed the best sensitivity for GC detection with values of 92.9%, 85.7% and 64.3% (p<0.05), respectively. Specificity was 85.7%, 71.4% and 71.4% (p<0.05), for each respectively.

Anti-proliferation Effects of Interferon-gamma on Gastric Cancer Cells

  • Zhao, Ying-Hui;Wang, Tao;Yu, Guang-Fu;Zhuang, Dong-Ming;Zhang, Zhong;Zhang, Hong-Xin;Zhao, Da-Peng;Yu, Ai-Lian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5513-5518
    • /
    • 2013
  • IFN-${\gamma}$ plays an indirect anti-cancer role through the immune system but may have direct negative effects on cancer cells. It regulates the viability of gastric cancer cells, so we examined whether it affects their proliferation and how that might be brought about. We exposed AGS, HGC-27 and GES-1 gastric cancer cell lines to IFN-${\gamma}$ and found significantly reduced colony formation ability. Flow cytometry revealed no effect of IFN-${\gamma}$ on apoptosis of cell lines and no effect on cell aging as assessed by ${\beta}$-gal staining. Microarray assay revealed that IFN-${\gamma}$ changed the mRNA expression of genes related to the cell cycle and cell proliferation and migration, as well as chemokines and chemokine receptors, and immunity-related genes. Finally, flow cytometry revealed that IFN-${\gamma}$ arrested the cells in the G1/S phase. IFN-${\gamma}$ may slow proliferation of some gastric cancer cells by affecting the cell cycle to play a negative role in the development of gastric cancer.

A Putative Early Response of Antifungal Bacillus lentimorbus WJ5 Against the Plant Pathogenic Fungus, Colletotrichum gloeosporioides, Analyzed by a DNA Microarray

  • Lee Young-Keun;Jang Yu-Sin;Chang Hwa-Hyoung;Hyung Seok Won;Chung Hye-Young
    • Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.308-312
    • /
    • 2005
  • The global RNA transcription profiles of Bacillus lentimorbus WJ5 under an in vitro co-culture with Colletotrichum gloeosporioides were analyzed in order to study the antagonistic bacteria-fungi interactions. Using a filter membrane system, B. lentimorhus WJ5 was exposed to the spores of C. gloeosporioides at the late exponential stage. The transcription profiles of the B. lentimorhus WJ5, both with and without a challenge from C. gloeosporioides, were analyzed using custom DNA chips containing 2,000 genome fragments. A total of 337 genes were expressed, with 87 and 47 up- and down-regulated, respectively. Of these, 12 genes, which were involved in central carbon metabolisms, and 7 from minor catabolism were relatively highly up-regulated (> 10 fold) and down-regulated (< 0.2 fold), respectively. Nine genes, which were thought to be related to the antifungal activity, were also up-regulated, but their levels were not so high (2.0 - 9.7 folds). From the results, during the early stage of the co-culture of B. lentimorbus WJ5 and C. gloeosporioides, nutrient competition seemed to occur; therefore, the genes from central carbon metabolisms could be up-regulated, while those from minor catabolism could be down-regulated.

Enhanced Cytotoxicity of 5-FU by bFGF through Up-Regulation of Uridine Phosphorylase 1

  • Im, Young-Sam;Shin, Hea Kyeong;Kim, Hye-Ryun;Jeong, So-Hee;Kim, Seung-Ryul;Kim, Yong-Min;Lee, Do Hyung;Jeon, Seong-Ho;Lee, Hyeon-Woo;Choi, Joong-Kook
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.119-124
    • /
    • 2009
  • Anti cancer agent 5-FU (Fluoro Uracil) is a prodrug that can be metabolized and then activated to interfere with RNA and DNA homeostasis. However, the majority of administered 5-FU is known to be catabolized in vivo in the liver where Dihydropyrimidine dehydrogenase (DPD) is abundantly expressed to degrade 5-FU. The biological factors that correlate with the response to 5-FU-based chemotherapy have been proposed to include uridine phosphorylase (UPP), thymidine phosphorylase (TPP), p53 and microsatellite instability. Among these, the expression of UPP is known to be controlled by cytokines such as $TNF-{\alpha}$, IL1 and $IFN-{\gamma}$. Our preliminary study using a DNA microarray technique showed that basic fibroblast growth factor (bFGF) markedly induced the expression of UPP1 at the transcription level. In the present study, we investigated whether bFGF could modulate the expression of UPP1 in osteo-lineage cells and examined the sensitivity of these cells to 5-FU mediated apoptosis.

A Putative Transcription Factor pcs1 Positively Regulates Both Conidiation and Sexual Reproduction in the Cereal Pathogen Fusarium graminearum

  • Jung, Boknam;Park, Jungwook;Son, Hokyoung;Lee, Yin-Won;Seo, Young-Su;Lee, Jungkwan
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.236-244
    • /
    • 2014
  • The plant pathogen Fusarium graminearum causes Fusarium head blight in cereal crops and produces mycotoxins that are harmful to animals and humans. For the initiation and spread of disease, asexual and sexual reproduction is required. Therefore, studies on fungal reproduction contribute to the development of new methods to control and maintain the fungal population. Screening a previously generated transcription factor mutant collection, we identified one putative $C_2H_2$ zincfinger transcription factor, pcs1, which is required for both sexual and asexual reproduction. Deleting pcs1 in F. graminearum resulted in a dramatic reduction in conidial production and a complete loss of sexual reproduction. The pathways and gene ontology of pcs1-dependent genes from microarray experiments showed that several G-protein related pathways, oxidase activity, ribosome biogenesis, and RNA binding and processing were highly enriched, suggesting that pcs1 is involved in several different biological processes. Further, overexpression of pcs1 increased conidial production and resulted in earlier maturation of ascospores compared to the wild-type strain. Additionally, the vegetative growth of the overexpression mutants was decreased in nutrient-rich conditions but was not different from the wild-type strain in nutrient-poor conditions. Overall, we discovered that the pcs1 transcription factor positively regulates both conidiation and sexual reproduction and confers nutrient condition-dependent vegetative growth.

Analysis of Gene Eexpression Pattern of Ailanthus altissima Extract and Gleevec on K-562 Leukemia Cell Line (K-562 백혈병 세포주에서 저근백피와 Gleevec을 처리에 의한 유전자 발현 비교 분석)

  • Cha, Min-Ho;An, Won-Gun;Jeon, Byung-Hun;Yun, Yong-Gab;Yoon, Yoo-Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.4
    • /
    • pp.913-921
    • /
    • 2005
  • In this study, we investigated gene expression patterns induced by Ailanthus altissima extract and compared it with Gleevec, a well-known anti-leukemia drug, in K562 chromic leukemia cells. Ailanthus altissima extract(100 ug/ml) and Gleevec(50 ug/ml) were treated to cells for 1h, 2h, 4h, and 16h and total RNA was extracted. Gene expressions were evaluated using cDMA microarray, in which 24,000 genes were spotted. Hierarchical clustering analysis showed that expression of genes included in two clusters were increased or decreased time dependently by both Ailanthus altissima extract and Gleevec. Genes included in another cluster were induced by Ailanthus altissima extract but not by Gleevec. In biological process analysis, expression of genes involved in apoptosis, growth arrest and DNA-damage were increased, but genes stimulating cell cycle were decreased. This study provides comprehensive comparison of the patterns of gene expression changes induced by Ailanthus altissima extract and Gleevec in K-562 leukemia cells.

Annexin A5 as a New Potential Biomarker for Cisplatin-Induced Toxicity in Human Kidney Epithelial Cells

  • Kwon, Yeo-Jung;Jung, Jin-Joo;Park, Na-Hee;Ye, Dong-Jin;Kim, Donghak;Moon, Aree;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.190-195
    • /
    • 2013
  • Cisplatin is a member of platinum-containing anti-cancer drugs that causes cross-linking of DNA and ultimately cancer cell apoptosis. The therapeutic function of cisplatin on various types of cancers has been widely reported but the side effects have been discovered together and nephrotoxicity has been regarded as major side effect of cisplatin. To select candidates for new sensitive nephrotoxicity biomarker, we performed proteomic analysis using 2-DE/MALDI-TOF-MS followed by cisplatin treatment in human kidney cell line, HK-2 cells, and compared the results to the gene profile from microarray composed of genes changed in expression by cisplatin from formerly reported article. Annexin A5 has been selected to be the most potential candidate and it has been identified using Western blot, RT-PCR and cell viability assay whether annexin A5 is available to be a sensitive nephrotoxic biomarker. Treatment with cisplatin on HK-2 cells caused the increase of annexin A5 expression in protein and mRNA levels. Over-expression of annexin A5 blocked HK-2 cell proliferation, indicating correlation between annexin A5 and renal cell toxicity. Taken together, these results suggest the possibility of annexin A5 as a new biomarker for cisplatin-mediated nephrotoxicity.

Gene Expression Profiling of Early Renal Toxicity Induced by Gentamicin in Mice

  • Oh, Jung-Hwa;Park, Han-Jin;Lim, Jung-Sun;Jeong, Sun-Young;Hwang, Ji-Yoon;Kim, Yong-Bum;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.185-192
    • /
    • 2006
  • To elucidate the molecular mechanisms associated with early renal injury induced by gentamicin, the most commonly used antibiotics worldwide in the treatment of Gram-negative bacterial infections. We have identified genes differentially expressed at different duration of gentamicin administration. C57BL/6 female mice were treated daily with gentamicin (20 mg/kg, 100 mg/kg, and 200mg/kg) for 7 days and then sacrificed at day 1, 3, and 7 after administration. Standard blood biochemistry and histopathological observation indicative of nephrotoxicity were made. Total RNA was extracted from the kidney for microarray analysis using Affymetrix $GeneChip^{\circledR}$. Five hundred and seventy eight genes were identified as being either up-or down-regulated over 2-fold changes during early renal injury (p<0.05) and were analyzed by hierarchical clustering. The results showed that the genes involved in early immune responses were differentially regulated during early renal injury. Principal component analysis (PCA) confirmed sample separation according to the degree of renal toxicity. In addition, we identified two potential biomarkers that may predict early renal toxicity. This data may contribute to elucidate of the genetic events during early renal injury and to discover the potential biomarkers for nephrotoxicity induced by gentamicin.

IDENTIFICATION OF GENES EXPRESSED IN LOW-DOSE-RATE γ-IRRADIATED MOUSE WHOLE BRAIN

  • Bong, Jin Jong;Kang, Yu Mi;Choi, Seung Jin;Kim, Dong-Kwon;Lee, Kyung Mi;Kim, Hee Sun
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.166-171
    • /
    • 2013
  • While high-dose ionizing radiation results in long term cellular cytotoxicity, chronic low-dose (<0.2 Gy) of X- or ${\gamma}$-ray irradiation can be beneficial to living organisms by inducing radiation hormesis, stimulating immune function, and adaptive responses. During chronic low-dose-rate radiation (LDR) exposure, whole body of mice is exposed to radiation, however, it remains unclear if LDR causes changes in gene expression of the whole brain. Therefore, we aim to investigate expressed genes (EGs) and signaling pathways specifically regulated by LDR-irradiation ($^{137}Cs$, a cumulative dose of 1.7 Gy for total 100 days) in the whole brain. Using microarray analysis of whole brain RNA extracts harvested from ICR and AKR/J mice after LDR-irradiation, we discovered that two mice strains displayed distinct gene regulation patterns upon LDR-irradiation. In ICR mice, genes involved in ion transport, transition metal ion transport, and developmental cell growth were turned on while, in AKR/J mice, genes involved in sensory perception, cognition, olfactory transduction, G-protein coupled receptor pathways, inflammatory response, proteolysis, and base excision repair were found to be affected by LDR. We validated LDR-sensitive EGs by qPCR and confirmed specific upregulation of S100a7a, Olfr624, and Gm4868 genes in AKR/J mice whole brain. Therefore, our data provide the first report of genetic changes regulated by LDR in the mouse whole brain, which may affect several aspects of brain function.

The Effect of Acupuncture in Promoting Neurogenesis and Angiogenesis after Middle Cerebral Artery Occlusion in Rats

  • Lee, Hong Min;Nam, Sang Soo;Kim, Yong Suk
    • Journal of Acupuncture Research
    • /
    • v.30 no.3
    • /
    • pp.1-13
    • /
    • 2013
  • Objectives : This study was performed to choose more effective neuro-protective acupuncture point and to verify the effect of acupuncture in promoting neurogenesis and angiogenesis as a result of its neuro-vasculo-regenerative effect in middle cerebral artery occlusion model in rats. Methods : By TTc staining we chose the most effective acupuncture point with neuro-protection. We randomly divided into four groups: Such as (1) sham group(with sham-operation), (2) sham+acupuncture group(with sham-operation), (3) middle cerebral artery occlusion group, (4) MCAO+AT group. Acupuncture procedure was performed for four days. Total RNA was extracted using TRIzol reagent, according to the manufacturer's instructions, and was purified using an RNAeasy mini kit. Immuno-histochemistry was performed using primary antibody mouse anti-BrdU, NeuN, Dcx, and VEGF. Results : We found that $ST_{36}$ had the more neuroprotective effect than $LI_{11}$ and $SP_3$. The microarray analysis revealed that 54 genes were more expressed neurogenesis pathway in MCAO+AT group compared with MCAO group(fold changes greater than or equal to twofold change). 11 genes were more expressed angiogenesis pathway. And 7 genes were more expressed VEGF pathway. Immuno-histochemistry revealed that cell proliferation, cell migration and cell maturation were increased. Conclusions : This study demonstrated that acupuncture on $ST_{36}$ had neuro-protective and neuro-restorative effect in ischemic brain injuries. And its mechanism might be related to promote neurogenesis and angiogenesis. These results suggest that acupuncture have potential benefits for the treatment of ischemic stroke.