• Title/Summary/Keyword: RNA alterations

검색결과 159건 처리시간 0.021초

Impact of High-Level Expression of Heterologous Protein on Lactococcus lactis Host

  • Kim, Mina;Jin, Yerin;An, Hyun-Joo;Kim, Jaehan
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권7호
    • /
    • pp.1345-1358
    • /
    • 2017
  • The impact of overproduction of a heterologous protein on the metabolic system of host Lactococcus lactis was investigated. The protein expression profiles of L. lactis IL1403 containing two near-identical plasmids that expressed high- and low-level of the green fluorescent protein (GFP) were examined via shotgun proteomics. Analysis of the two strains via high-throughput LC-MS/MS proteomics identified the expression of 294 proteins. The relative amount of each protein in the proteome of both strains was determined by label-free quantification using the spectral counting method. Although expression level of most proteins were similar, several significant alterations in metabolic network were identified in the high GFP-producing strain. These changes include alterations in the pyruvate fermentation pathway, oxidative pentose phosphate pathway, and de novo synthesis pathway for pyrimidine RNA. Expression of enzymes for the synthesis of dTDP-rhamnose and N-acetylglucosamine from glucose was suppressed in the high GFP strain. In addition, enzymes involved in the amino acid synthesis or interconversion pathway were downregulated. The most noticeable changes in the high GFP-producing strain were a 3.4-fold increase in the expression of stress response and chaperone proteins and increase of caseinolytic peptidase family proteins. Characterization of these host expression changes witnessed during overexpression of GFP was might suggested the metabolic requirements and networks that may limit protein expression, and will aid in the future development of lactococcal hosts to produce more heterologous protein.

MLS$_B$계 항생물질 유도 내성 세균에서 In vitro로 선발된 지속성 내성형 erm(A)와 erm(C)의 분자적 특성 규명 (Molecular Analysis of Spontaneous Mutations in erm(A) and erm(C) Selected In vitro as a Constitutive MLS$_B$ Resistant Staphylococci)

  • 윤은정;진성혜;최응칠;심미자
    • 약학회지
    • /
    • 제51권2호
    • /
    • pp.108-114
    • /
    • 2007
  • The predominant Macrolides-Lincosamide-Streptogramin B (MLS$_B$) antibiotics resistance genes in staphylococci are erm(A) and erm(C). There is the phenomenon that the ratio of constitutively MLS$_B$ antibiotics resistance (cMLS) in erm(A) is much higher than in erm(C). Thus, we confirmed that the difference of the mutation ratio between erm(A) and erm(C) makes the phenomenon. We examined 8 staphylococci carrying inducibly expressed (iMLS) erm(A) or erm(C) genes. After overnight incubation in the presence of the non-inducer MLS$_B$ antibiotics, spontaneous mutants constitutively expressed MLS$_B$ resistance were selected. Against our expectation, the mutation ratio of erm(A) was lower than erm(C). Therefore, possibilities of other factors determining the ratio of cMLS phenotype might be concerned. All the mutants showed sequence alterations in translational attenuator and all the alterations seemed to give rise to change the second structure of mRNA to express constitutively. For erm(A), 4 different types of sequence deletions ranging from 72 bp to 122 bp and 3 different types of duplications ranging 24 bp to 93 bp were detected. Also, there were 9 different types of duplications ranging 15bp to 154bp in erm(C).

Gut Microbiome Alterations and Functional Prediction in Chronic Spontaneous Urticaria Patients

  • Zhang, Xinyue;Zhang, Jun;Chu, Zhaowei;Shi, Linjing;Geng, Songmei;Guo, Kun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권5호
    • /
    • pp.747-755
    • /
    • 2021
  • The effects of the gut microbiome on both allergy and autoimmunity in dermatological diseases have been indicated in several recent studies. Chronic spontaneous urticaria (CSU) is a disease involving allergy and autoimmunity, and there is no report detailing the role of microbiota alterations in its development. This study was performed to identify the fecal microbial composition of CSU patients and investigate the different compositions and potential genetic functions on the fecal microbiota between CSU patients and normal controls. The gut microbiota of CSU patients and healthy individuals were obtained by 16s rRNA massive sequencing. Gut microbiota diversity and composition were compared, and bioinformatics analysis of the differences was performed. The gut microbiota composition results showed that Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia were dominant microbiota in CSU patients. The differential analysis showed that relative abundance of the Proteobacteria (p = 0.03), Bacilli (p = 0.04), Enterobacterales (p = 0.03), Enterobacteriaceae (p = 0.03) was significantly increased in CSU patients. In contrast, the relative abundance of Megamonas, Megasphaera, and Dialister (all p < 0.05) in these patients significantly decreased compared with healthy controls. The different microbiological compositions impacted normal gastrointestinal functions based on function prediction, resulting in abnormal pathways, including transport and metabolism. We found CSU patients exhibited gut microbiota dysbiosis compared with healthy controls. Our results indicated CSU is associated with gut microbiota dysbiosis and pointed out that the bacterial taxa increased in CSU patients, which might be involved in the pathogenesis of CSU. These results provided clues for future microbial-based therapies on CSU.

장기간 예측 불가능한 스트레스를 받은 마우스 해마에서 p11 유전자의 히스톤 아세틸화 및 메틸화의 조절 (Regulation of Histone Acetylation and Methylation of the p11 Gene in the Hippocampus of Chronic Unpredictable Stress-induced Depressive Mice)

  • 서미경;석대현;박성우
    • 생명과학회지
    • /
    • 제31권11호
    • /
    • pp.995-1003
    • /
    • 2021
  • 크로마틴 리모델링은 후성유전기전을 통해 유전자 발현을 조절한다. 비정상적인 히스톤 변형이 우울증 발생에 관여하는 것으로 알려져 있다. p11 (S100A10)은 인간과 설치류에서 우울증의 병태생리에 관여한다고 보고되었다. 본 연구는 우울증 동물모델인 장기간 예측 불가능한 스트레스가 마우스 해마에서 p11 유전자 promoter의 히스톤 변형에 미치는 영향을 조사하고자 하였다. C57BL/6 마우스에 21일 동안 스트레스를 가하고, 강제수영검사를 수행하여 우울 유사 행동 양상을 측정하였다. Real time PCR 및 Western blotting 분석법으로 p11 발현 변화를 조사하였으며, 염색질 면역침전분석법을 수행하여 p11 promoter의 히스톤 H3 아세틸화 및 메틸화 양을 측정하였다. 장기간 예측 불가능한 스트레스는 강제수영검사에서 부동시간을 증가시켜 우울 유사 행동을 나타내었으며, 해마의 p11 mRNA 및 단백질 발현을 유의하게 감소시켰다. 또한 p11 promoter의 히스톤 H3 아세틸화(Ac-H3) 및 H3-K4 트리메틸화(H3K4met3)를 유의하게 감소시켰으며, H3-K27 트리메틸화(H3K27met3)를 증가시켰다. 본 연구결과는 만성 스트레스가 해마에서 p11 유전자의 후성유전적 억제를 야기하여 p11 유전자의 발현을 감소시킴을 시사한다.

소풍도적탕(消風導赤湯)이 아토피 피부염의 항염증효과와 각질층 ceramide변화에 미치는 영향 (Changes in Ceramide in Stratum Corneum and Anti-inflamatory Effects of Sopungdojeok-tang on Atopic Dermatitis)

  • 강윤호;김성아
    • 대한한방내과학회지
    • /
    • 제27권1호
    • /
    • pp.72-83
    • /
    • 2006
  • Objective : This study was designed to identify lipid protection formation in stratum corneum and anti-inflammatory effects of Sopungdojeok-tang(SD) on atopic dermatitis(AD). Materials and Methods : In Vivo, SD extract was orally administered to BALB/c mice at $2.5m{\ell}/kg/day$ for 2 days after 5% sodium dodecyl sulfate evoked atopic dermatitis in abdominal skin. Morphological changes were observed by immunohistochemical stain using monoclonal antibodies(BrdU, ceramide, MIP-2, $NF-{\kappa}B$ p50, IL-4, and STAT6) and TUNEL method. In vitro, the alterations of IL-4 mRNA expression were detected by RT-PCT in SD extract treated EL4 cells after phorbol-12-myristate-13-acetate and 4-tert-Octylphenol induce Th2 skewed condition. Results : SD is used in Oriental Medicine for its potential curative for atopic dermatitis. In this study, we have investigated the anti-inflammatory and lipid lamella repair effects of SD were investigated. SD decreased the number of eosinophil in atopic dermatitis induced mice. In the histological properties, the hyperplasia, edema, infiltration of lymphocytes, damage of intercellular space of stratum corneum, BrdU positive reacted cells in stratum basal, and degranulated mast cells and capillaries in dermal papillae decreased in mice with SD. Treatment of SD also decreased MIP-2, STAT6 and IL-4 in dermal papillae. The IL-4 mRNA expression decreased in a dose-dependant manner in SD treated EL4 cells. In addition, decrease of $NF-{\kappa}B$ p50 and increase of apoptotic cells in dermis were observed in SD treated mice. These data suggest that SD may beneficial for atopic dermatitis. Conclusions : These data suggest that SD is beneficial in treatment of atopic dermatitis, and that SD provides lipid protection in stratum corneum and anti-inflammatory effects on atopic dermatitis.

  • PDF

Effects of Field-Grown Genetically Modified Zoysia Grass on Bacterial Community Structure

  • Lee, Yong-Eok;Yang, Sang-Hwan;Bae, Tae-Woong;Kang, Hong-Gyu;Lim, Pyung-Ok;Lee, Hyo-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권4호
    • /
    • pp.333-340
    • /
    • 2011
  • Herbicide-tolerant Zoysia grass has been previously developed through Agrobacterium-mediated transformation. We investigated the effects of genetically modified (GM) Zoysia grass and the associated herbicide application on bacterial community structure by using culture-independent approaches. To assess the possible horizontal gene transfer (HGT) of transgenic DNA to soil microorganisms, total soil DNAs were amplified by PCR with two primer sets for the bar and hpt genes, which were introduced into the GM Zoysia grass by a callus-type transformation. The transgenic genes were not detected from the total genomic DNAs extracted from 1.5 g of each rhizosphere soils of GM and non-GM Zoysia grasses. The structures and diversities of the bacterial communities in rhizosphere soils of GM and non-GM Zoysia grasses were investigated by constructing 16S rDNA clone libraries. Classifier, provided in the RDP II, assigned 100 clones in the 16S rRNA gene sequences library into 11 bacterial phyla. The most abundant phyla in both clone libraries were Acidobacteria and Proteobacteria. The bacterial diversity of the GM clone library was lower than that of the non- GM library. The former contained four phyla, whereas the latter had seven phyla. Phylogenetic trees were constructed to confirm these results. Phylogenetic analyses of the two clone libraries revealed considerable difference from each other. The significance of difference between clone libraries was examined with LIBSHUFF statistics. LIBSHUFF analysis revealed that the two clone libraries differed significantly (P<0.025), suggesting alterations in the composition of the microbial community associated with GM Zoysia grass.

Involvement of ERK1/2 and JNK Pathways in 17${\beta}-estradiol$ Induced Kir6.2 and SK2 Upregulation in Rat Osteoblast-like Cells

  • Kim, Jung-Wook;Yang, Eun-Kyoung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권4호
    • /
    • pp.199-205
    • /
    • 2006
  • The functional expression of potassium $(K^+)$ channels has electrophysiologically been studied in bone cells from several species, however, their identity and regulation of gene expressions in bone cells are not well known. In the present study, to investigate how $K^+$ channel expressions are regulated by estrogen, we measured changes of transcript levels of various $Ca^{2+}$-activated ($K_{Ca}$) and ATP-sensitive $K^+$ channels in rat osteoblastic ROS 17/2.8 cells after treatment with estrogen. Application of 17${\beta}$-estradiol $(E_2)$ for 24 h and 48 h increased mRNA and protein expressions of inwardly rectifying $K^+$ channel (Kir) 6.2 and type 2 small conductance $K_{Ca}$ channel (SK2), respectively. Combined treatment of cells with 17${\beta}-E_2$ and ICI 182,780, a pure antiestrogen, suppressed 17${\beta}-E_2$-induced alterations of SK2 and Kir6.2 mRNA levels. In addition, treatment of cells with U0126, a specific inhibitor of extracellular receptor kinases (ERK)1/2, and SP600125, a specific inhibitor of c-jun N-terminal kinase (JNK) blocked the enhancing effects of 17${\beta}-E_2$ on SK2 and Kir6.2 protein expressions. On the other hand, blocking of p38 mitogen-activated protein kinase had no effect. Taken together, these results indicate that 17${\beta}-E_2$ modulates SK2 and Kir6.2 expressions through the estrogen receptor, involving ERK1/2 and JNK activations.

Establishment and characterization of bortezomib-resistant U266 cell line: Constitutive activation of NF-κB-mediated cell signals and/or alterations of ubiquitylation-related genes reduce bortezomib-induced apoptosis

  • Park, Juwon;Bae, Eun-Kyung;Lee, Chansu;Choi, Jee-Hye;Jung, Woo June;Ahn, Kwang-Sung;Yoon, Sung-Soo
    • BMB Reports
    • /
    • 제47권5호
    • /
    • pp.274-279
    • /
    • 2014
  • Bortezomib has been known as the most promising anti-cancer drug for multiple myeloma (MM). However, recent studies reported that not all MM patients respond to bortezomib. To overcome such a stumbling-block, studies are needed to clarify the mechanisms of bortezomib resistance. In this study, we established a bortezomib-resistant cell line (U266/velR), and explored its biological characteristics. The U266/velR showed reduced sensitivity to bortezomib, and also showed cross-resistance to the chemically unrelated drug thalidomide. U266/velR cells had a higher proportion of CD138 negative subpopulation, known as stem-like feature, compared to parental U266 cells. U266/velR showed relatively less inhibitory effect of prosurvival NF-${\kappa}B$ signaling by bortezomib. Further analysis of RNA microarray identified genes related to ubiquitination that were differentially regulated in U266/velR. Moreover, the expression level of CD52 in U266 cells was associated with bortezomib response. Our findings provide the basis for developing therapeutic strategies in bortezomib-resistant relapsed and refractory MM patients.

GSK-J4-Mediated Transcriptomic Alterations in Differentiating Embryoid Bodies

  • Mandal, Chanchal;Kim, Sun Hwa;Kang, Sung Chul;Chai, Jin Choul;Lee, Young Seek;Jung, Kyoung Hwa;Chai, Young Gyu
    • Molecules and Cells
    • /
    • 제40권10호
    • /
    • pp.737-751
    • /
    • 2017
  • Histone-modifying enzymes are key players in the field of cellular differentiation. Here, we used GSK-J4 to profile important target genes that are responsible for neural differentiation. Embryoid bodies were treated with retinoic acid ($10{\mu}M$) to induce neural differentiation in the presence or absence of GSK-J4. To profile GSKJ4-target genes, we performed RNA sequencing for both normal and demethylase-inhibited cells. A total of 47 and 58 genes were up- and down-regulated, respectively, after GSK-J4 exposure at a log2-fold-change cut-off value of 1.2 (p-value < 0.05). Functional annotations of all of the differentially expressed genes revealed that a significant number of genes were associated with the suppression of cellular proliferation, cell cycle progression and induction of cell death. We also identified an enrichment of potent motifs in selected genes that were differentially expressed. Additionally, we listed upstream transcriptional regulators of all of the differentially expressed genes. Our data indicate that GSK-J4 affects cellular biology by inhibiting cellular proliferation through cell cycle suppression and induction of cell death. These findings will expand the current understanding of the biology of histone-modifying enzymes, thereby promoting further investigations to elucidate the underlying mechanisms.

The Transcription Cofactor Swi6 of the Fusarium graminearum Is Involved in Fusarium Graminearum Virus 1 Infection-Induced Phenotypic Alterations

  • Son, Moonil;Lee, Yoonseung;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • 제32권4호
    • /
    • pp.281-289
    • /
    • 2016
  • The transcription cofactor Swi6 plays important roles in regulating vegetative growth and meiosis in Saccharomyces cerevisiae. Functions of Swi6 ortholog were also characterized in Fusarium graminearum which is one of the devastating plant pathogenic fungi. Here, we report possible role of FgSwi6 in the interaction between F. graminearum and Fusarium graminearum virus 1 (FgV1) strain DK21. FgV1 perturbs biological characteristics of host fungi such as vegetative growth, sporulation, pigmentation, and reduction of the virulence (hypovirulence) of its fungal host. To characterize function(s) of FgSWI6 gene during FgV1 infection, targeted deletion, over-expression, and complementation mutants were generated and further infected successfully with FgV1. Deletion of FgSwi6 led to severe reduction of vegetative growth even aerial mycelia while over-expression did not affect any remarkable alteration of phenotype in virus-free isolates. Virus-infected (VI) FgSWI6 deletion isolate exhibited completely delayed vegetative growth. However, VI FgSWI6 over-expression mutant grew faster than any other VI isolates. To verify whether these different growth patterns in VI isolates, viral RNA quantification was carried out using qRT-PCR. Surprisingly, viral RNA accumulations in VI isolates were similar regardless of introduced mutations. These results provide evidence that FgSWI6 might play important role(s) in FgV1 induced phenotype alteration such as delayed vegetative growth.