• Title/Summary/Keyword: RNA Interference

Search Result 237, Processing Time 0.024 seconds

Improving Cellulase Production in Trichoderma koningii Through RNA Interference on ace1 Gene Expression

  • Wang, Shao-Wen;Xing, Miao;Liu, Gang;Yu, Shao-Wen;Wang, Juan;Tian, Sheng-Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1133-1140
    • /
    • 2012
  • Ribonucleic acid interference (RNAi) inhibits the expression of target genes in a sequence-specific manner, and shows potential for gene knockdown in filamentous fungi, in which the locus-specific gene knockout occurs in low frequency. In this study, the function of the repressor of cellulase expression I (ACEI) was verified in Trichoderma koningii (T. koningii) YC01 through RNAi, and ace1-silenced strains with improved cellulase productivity were obtained. An expression cassette that transcribed the interfering double-stranded RNA (dsRNA) of ace1 was constructed and transformed into T. koningii, and the transformants, in which the expression of ace1 was successfully silenced, were selected. As a result of the ace1 gene silencing, the expression levels of the main cellulase and xylanase genes were elevated, and the enhanced production of total proteins, cellulase, and xylanase was observed in the cultivation. In addition, the down-regulation of ace1 resulted in an increasing expression of xyr1, but no clear variation in the expression of cre1, which suggested that ACEI acted as a repressor of the xyr1 transcription, but was not involved in the regulation of the cre1 expression. The results of this work indicate that ace1 is a valid target gene for enhancing enzyme production in T. koningii, and RNAi is an appropriate tool for improving the properties of industrial fungi.

Silencing of Lysyl Oxidase Gene Expression by RNA Interference Suppresses Metastasis of Breast Cancer

  • Liu, Jian-Lun;Wei, Wei;Tang, Wei;Jiang, Yi;Yang, Hua-Wei;Li, Jing-Tao;Zhou, Xiao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3507-3511
    • /
    • 2012
  • Objective: The aim of this study was to investigate possible mechanisms of LOX gene effects on invasion and metastasis of breast cancer cells by RNA interference. Methods: LOX-RNAi-LV was designed, synthesized, and then transfected into a breast cancer cell line (MDA-MB-231). Expression of LOX, MMP-2 and MMP-9 was determined by real-time PCR, and protein expression of LOX by Western blotting. Cell migration and invasiveness were assessed with Transwell chambers. A total of 111 cases of breast cancer tissues, cancer-adjacent normal breast tissues, and 20 cases of benign lesion tissues were assessed by immunohistochemistry. Results: Expression of LOX mRNA and protein was suppressed, and the expression of MMP-2 and MMP-9 was significantly lower in the RNAi group than the control group (P<0.05), after LOX-RNAi-LV was transfection into MDA-MB-231 cells. Migration and invasion abilities were obviously inhibited. The expression of LOX protein in breast cancer, cancer-adjacent normal breast tissues and benign breast tumor were 48.6% (54/111), 26.1% (29/111), 20.0% (4/20), respectively, associations being noted with clinical stage, lymph node metastasis, tumor size and ER, PR, HER2, but not age. LOX protein was positively correlated with MMP-2 and MMP-9. Conclusion: LOX displayed an important role in invasion and metastasis of breast cancer by regulating MMP-2 and MMP-9 expression which probably exerted synergistic effects on the extracellular matrix (ECM).

Polyvalent Nanoparticle-oligonudleotide conjugates: Synthesis, Properties, and Biodiagnostic/Therapeutic Applications

  • Lee, Jae-Seung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.7.2-7.2
    • /
    • 2009
  • Polyvalent nanoparticle-DNA conjugates exhibit a variety of unique features such as programmable assembly and disassembly, sharp melting transitons, intense optical properties, high stability, enhanced binding properties, and easy fabrication of the surface nature by chemical and physical modification. The unique properties of nanoparticle-DNA conjugates enable one to build up a number of versatile assay schemes for the detection of various targets. In addition, nanoparticle-RNA conjugates also demonstrate great promise of therapeutic applications in the context of RNA interference when combined with polymeric materials. In this presentation, representative examples of each aspect of nanoparticle-oligonucleotide conjugates will be discussed.

  • PDF

MicroRNAs as Novel Biomarkers for the Diagnosis of Alzheimer's Disease and Modern Advancements in the Treatment

  • Gunasekaran, Tamil Iniyan;Ohn, Takbum
    • Biomedical Science Letters
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Alzheimer's disease is a common form of dementia occurring among the elderly population and can be identified by symptoms such as cognition impairments, memory loss and neuronal dysfunction. Alzheimer's disease was found to be caused by the deposition of $\beta$-amyloid plaques and neurofibrillary tangles. In addition, mutation in the APP (Amyloid precursor protein), Presenilin 1 (PSEN1) and Presenilin 2 (PSEN2) genes were also found to contribute to Alzheimer's disease. Since the potential conformational diagnosis of Alzheimer's disease requires histopathological tests on brain through autopsy, potential early diagnosis still remains challenging. In recent years, several researches have proposed the use of biomarkers for early diagnosis. In cerebrospinal fluid (CSF), $\beta$-amyloid(1-42), phosphorylated-tau and total tau were suggested to be effective biomarkers for Alzheimer's disease diagnosis. However, a single biomarker might not be sufficient for potential diagnosis of Alzheimer's disease. Thus, the use of RNA interference (RNAi) through microRNAs (miRNAs) has been proposed by several researchers for simultaneous analysis of several biomarkers using microarray technology. These miRNA based biomarkers can be analysed from both blood and CSF, but miRNAs from blood are advantageous over CSF as they are non-invasive and simple for collection. Moreover, the RNAi based therapeutics by siRNA (short interference RNA) or shRNA (short hairpin RNA) have also been proposed to be effective in the treatment of Alzheimer's disease. This review describes the promising application of RNAi technology in therapeutics and as a biomarker for both Alzheimer's disease diagnosis and treatment.

RNA Binding Protein as an Emerging Therapeutic Target for Cancer Prevention and Treatment

  • Hong, Suntaek
    • Journal of Cancer Prevention
    • /
    • v.22 no.4
    • /
    • pp.203-210
    • /
    • 2017
  • After transcription, RNAs are always associated with RNA binding proteins (RBPs) to perform biological activities. RBPs can interact with target RNAs in sequence- and structure-dependent manner through their unique RNA binding domains. In development and progression of carcinogenesis, RBPs are aberrantly dysregulated in many human cancers with various mechanisms, such as genetic alteration, epigenetic change, noncoding RNA-mediated regulation, and post-translational modifications. Upon deregulation in cancers, RBPs influence every step in the development and progression of cancer, including sustained cell proliferation, evasion of apoptosis, avoiding immune surveillance, inducing angiogenesis, and activating metastasis. To develop therapeutic strategies targeting RBPs, RNA interference-based oligonucleotides or small molecule inhibitors have been screened based on reduced RBP-RNA interaction and changed level of target RNAs. Identification of binding RNAs with high-throughput techniques and integral analysis of multiple datasets will help us develop new therapeutic drugs or prognostic biomarkers for human cancers.

siRNA-mediated Inhibition of hTERC Enhances Radiosensitivity of Cervical Cancer

  • Chen, Min;Xing, Li-Na
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.5975-5979
    • /
    • 2012
  • Background: To investigate the influence of telomerase activity, apoptosis, radiosensitivity of cervical cancer after siRNA-mediated knockdown of telomerase RNA and evaluate in vivo growth with gene interference. Methods: We studied siRNA-targeting-telomerase RNA transfection into the Hela cell line. Expression of hTERC mRNA was detected by RT-PCR and telomerase activity was measured by the TRAP assay. Growth inhibition was determined by MTT assay and radiosensitivity of the cervical cancer cells was examined by colony formation assay. In addtion, effects of hTERC inhibition in vivo were studied by injection of siRNA-transfected Hela cells into nude mice. Results: The hTERC siRNA effectively downregulated the expression of hTERC mRNA and also reduced the telomerase activity to 30% of the untreated control vlaue. The viability of hTERC siRNA transfected Hela cells was reduced by 44.7% after transfection. After radiation treatment, the radiosensitivity of Hela cells with hTERC knockdown was increased. In vivo, the tumors developing from the hTERC siRNA-transfected cells were of reduced size, indicating that the hTERT siRNA also depressed the tumorigenic potential of the Hela cells. Conclusions: Our results supported the concept of siRNA-mediated inhibition of telomerase mRNA which could inhibit the expression of hTERC and telomerase activity. Furthermore, radiosensitivity was upregulated after knockdown the hTERC in vivo and in vitro.

Development of Two-Component Nanorod Complex for Dual-Fluorescence Imaging and siRNA Delivery

  • Choi, Jin-Ha;Oh, Byung-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1291-1299
    • /
    • 2014
  • Recently, multifunctional nanomaterials have been developed as nanotherapeutic agents for cellular imaging and targeted cancer treatment because of their ease of synthesis and low cytotoxicity. In this study, we developed a multifunctional, two-component nanorod consisting of gold (Au) and nickel (Ni) blocks that enables dual-fluorescence imaging and the targeted delivery of small interfering RNA (siRNA) to improve cancer treatment. Fluorescein isothiocyanate-labeled luteinizing hormone-releasing hormone (LHRH) peptides were attached to the surface of a Ni block via a histidine-tagged LHRH interaction to specifically bind to a breast cancer cell line, MCF-7. The Au block was modified with TAMRA-labeled thiolated siRNA in order to knock down the vascular endothelial growth factor protein to inhibit cancer growth. These two-component nanorods actively targeted and internalized into MCF-7 cells to induce apoptosis through RNA interference. This study demonstrates the feasibility of using two-component nanorods as a potential theranostic in breast cancer treatment, with capabilities in dual imaging and targeted gene delivery.

Radixin Knockdown by RNA Interference Suppresses Human Glioblastoma Cell Growth in Vitro and in Vivo

  • Qin, Jun-Jie;Wang, Jun-Mei;Du, Jiang;Zeng, Chun;Han, Wu;Li, Zhi-Dong;Xie, Jian;Li, Gui-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9805-9812
    • /
    • 2014
  • Radixin, a member of the ERM (ezrin-radixin-moesin) family, plays important roles in cell motility, invasion and tumor progression. It is expressed in a variety of normal and neoplastic cells, including many types of epithelial and lymphoid examples. However, its function in glioblastomas remains elusive. Thus, in this study, radixin gene expression was first examined in the glioblastoma cells, then suppressed with a lentivirus-mediated short-hairpin RNA (shRNA) method.We found that there were high levels of radixin expression in glioblastoma U251cells. Radixin shRNA caused down-regulation of radixin gene expression and when radixin-silenced cells were implanted into nude mice, tumor growth was significantly inhibited as compared to blank control cells or nonsense shRNA cells. In addition, microvessel density in the tumors was significantly reduced. Thrombospondin-1 (TSP-1) and E-cadherin were up-regulated in radixin- suppressed glioblastoma U251 cells. In contrast, MMP9 was down-regulated. Taken together, our findings suggest that radixin is involved in GBM cell migration and invasion, and implicate TSP-1, E-cadherin and MMP9 as metastasis-inducing factors.

Down-regulation of EZH2 by RNA Interference Inhibits Proliferation and Invasion of ACHN Cells via the Wnt/β-catenin Pathway

  • Yuan, Jun-Bin;Yang, Luo-Yan;Tang, Zheng-Yan;Zu, Xiong-Bing;Qi, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6197-6201
    • /
    • 2012
  • Although enhancer of zeste homolog 2 (EZH2) has been reported as an independent prognostic factor in renal cell carcinoma (RCC), little is known about the exact mechanism of EZH2 in promoting the genesis of RCC. However, several studies have shown that dysregulation of the Wnt/${\beta}$-catenin signaling pathway plays a crucial role. Therefore, we determined whether EZH2 could affect ACHN human RCC cell proliferation and invasion via the Wnt/${\beta}$-catenin pathway. In the present study, we investigated the effects of short interfering RNA (siRNA)-mediated EZH2 gene silencing on Wnt/${\beta}$-catenin signaling in ACHN cells. EZH2-siRNA markedly inhibited the proliferation and invasion capabilities of ACHN, while also reducing the expression of EZH2, Wnt3a and ${\beta}$-catenin. In contrast, cellular expression of GSK-$3{\beta}$ (glycogen synthase kinase-$3{\beta}$), an inhibitor of the Wnt/${\beta}$-catenin pathway, was conspicuously higher after transfection of EZH2 siRNA. These preliminary findings suggest EZH2 may promote proliferation and invasion of ACHN cells via action on the Wnt/${\beta}$-catenin signaling pathway.

Knockdown of Radixin by RNA interference Suppresses the Growth of Human Pancreatic Cancer Cells in Vitro and in Vivo

  • Chen, Shu-Dong;Song, Mao-Min;Zhong, Zhi-Qiang;Li, Na;Wang, Pi-Lin;Cheng, Shi;Bai, Ri-Xing;Yuan, Hui-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.753-759
    • /
    • 2012
  • Radixin, encoded by a gene on chromosome 11, plays important roles in cell motility, invasion and tumor progression. However, its function in pancreatic cancer remains elusive. In this study, radixin gene expression was suppressed with a lentivirus-mediated short-hairpin RNA (shRNA) method. We found that radixin shRNA caused down-regulation of radixin in PANC-1 cells, associated with inhibition of pancreatic cancer cell proliferation, survival, adhesion and invasive potential in vitro. When radixin-silenced cells were implanted in nude mice, tumor growth and microvessel density were significantly inhibited as compared to blank control cells or nonsense shRNA control cells. Thrombospondin-1 (TSP-1) and E-cadherin were up-regulated in radixin-silenced PANC-1 cells. Our results suggest that radixin might play a critical role in pancreatic cancer progression, possibly through invvolvement of down-regulation of TSP-1 and E-cadherin expression.