• Title/Summary/Keyword: RNA 1 structure

Search Result 353, Processing Time 0.033 seconds

Whole-Genome Characterization of Alfalfa Mosaic Virus Obtained from Metagenomic Analysis of Vinca minor and Wisteria sinensis in Iran: with Implications for the Genetic Structure of the Virus

  • Moradi, Zohreh;Mehrvar, Mohsen
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.619-631
    • /
    • 2021
  • Alfalfa mosaic virus (AMV), an economically important pathogen, is present worldwide with a very wide host range. This work reports for the first time the infection of Vinca minor and Wisteria sinensis with AMV using RNA sequencing and reverse transcription polymerase chain reaction confirmation. De novo assembly and annotating of contigs revealed that RNA1, RNA2, and RNA3 genomic fragments consist of 3,690, 2,636, and 2,057 nucleotides (nt) for IR-VM and 3,690, 2,594, and 2,057 nt for IR-WS. RNA1 and RNA3 segments of IR-VM and IR-WS closely resembled those of the Chinese isolate HZ, with 99.23-99.26% and 98.04-98.09% nt identity, respectively. Their RNA2 resembled that of Canadian isolate CaM and American isolate OH-2-2017, with 97.96-98.07% nt identity. The P2 gene revealed more nucleotide diversity compared with other genes. Genes in the AMV genome were under dominant negative selection during evolution, and the P1 and coat protein (CP) proteins were subject to the strongest and weakest purifying selection, respectively. In the population genetic analysis based on the CP gene sequences, all 107 AMV isolates fell into two main clades (A, B) and isolates of clade A were further divided into three groups with significant subpopulation differentiation. The results indicated moderate genetic variation within and no clear geographic or genetic structure between the studied populations, implying moderate gene flow can play an important role in differentiation and distribution of genetic diversity among populations. Several factors have shaped the genetic structure and diversity of AMV: selection, recombination/reassortment, gene flow, and random processes such as founder effects.

Rho-dependent Transcription Termination: More Questions than Answers

  • Banerjee Sharmistha;Chalissery Jisha;Bandey Irfan;Sen Ranjan
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.11-22
    • /
    • 2006
  • Escherichia coli protein Rho is required for the factor-dependent transcription termination by an RNA polymerase and is essential for the viability of the cell. It is a homohexameric protein that recognizes and binds preferably to C-rich sites in the transcribed RNA. Once bound to RNA, it utilizes RNA-dependent ATPase activity and subsequently ATPase-dependent helicase activity to unwind RNA-DNA hybrids and release RNA from a transcribing elongation complex. Studies over the past few decades have highlighted Rho as a molecule and have revealed much of its mechanistic properties. The recently solved crystal structure could explain many of its physiological functions in terms of its structure. Despite all these efforts, many of the fundamental questions pertaining to Rho recognition sites, differential ATPase activity in response to different RNAs, translocation of Rho along the nascent transcript, interactions with elongation complex and finally unwinding and release of RNA remain obscure. In the present review we have attempted to summarize 'the knowns' and 'the unknowns' of the Rho protein revealed by the recent developments in this field. An attempt has also been made to understand the physiology of Rho in the light of its phylogeny.

Examining the Gm18 and $m^1G$ Modification Positions in tRNA Sequences

  • Subramanian, Mayavan;Srinivasan, Thangavelu;Sudarsanam, Dorairaj
    • Genomics & Informatics
    • /
    • v.12 no.2
    • /
    • pp.71-75
    • /
    • 2014
  • The tRNA structure contains conserved modifications that are responsible for its stability and are involved in the initiation and accuracy of the translation process. tRNA modification enzymes are prevalent in bacteria, archaea, and eukaryotes. tRNA Gm18 methyltransferase (TrmH) and tRNA $m^1G37$ methyltransferase (TrmD) are prevalent and essential enzymes in bacterial populations. TrmH involves itself in methylation process at the 2'-OH group of ribose at the 18th position of guanosine (G) in tRNAs. TrmD methylates the G residue next to the anticodon in selected tRNA subsets. Initially, $m^1G37$ modification was reported to take place on three conserved tRNA subsets ($tRNA^{Arg}$, $tRNA^{Leu}$, $tRNA^{Pro}$); later on, few archaea and eukaryotes organisms revealed that other tRNAs also have the $m^1G37$ modification. The present study reveals Gm18, $m^1G37$ modification, and positions of $m^1G$ that take place next to the anticodon in tRNA sequences. We selected extremophile organisms and attempted to retrieve the $m^1G$ and Gm18 modification bases in tRNA sequences. Results showed that the Gm18 modification G residue occurs in all tRNA subsets except three tRNAs ($tRNA^{Met}$, $tRNA^{Pro}$, $tRNA^{Val}$). Whereas the $m^1G37$ modification base G is formed only on $tRNA^{Arg}$, $tRNA^{Leu}$, $tRNA^{Pro}$, and $tRNA^{His}$, the rest of the tRNAs contain adenine (A) next to the anticodon. Thus, we hypothesize that Gm18 modification and $m^1G$ modification occur irrespective of a G residue in tRNAs.

The Terminal and Internal Hairpin Loops of the ctRNA of Plasmid pJB01 Play Critical Roles in Regulating Copy Number

  • Kim, Sam Woong;Jeong, In Sil;Jeong, Eun Ju;Tak, Je Il;Lee, John Hwa;Eo, Seong Kug;Kang, Ho Young;Bahk, Jeong Dong
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.26-33
    • /
    • 2008
  • The plasmid pJB01, a member of the pMV158 family isolated from Enterococcus faecium JC1, contains three open reading frames, copA, repB, and repC. Plasmids included in this family produce counter-transcribed RNA (ctRNA) that contributes to copy number control. The pJB01 ctRNA, a transcript which consists of 54 nucleotides (nts), is encoded on the opposite strand from the copA/repB intergenic region and partially overlaps an atypical ribosome binding site (ARBS) for repB. The ARBS is integrated by the two underlined conserved regions: 5'-TTTTTGTNNNNTAANNNNNNNNNATG-3', and the ctRNA is complementary only to the 5' conserved sequence 5'-TTTTTGT-3'. This complementary sequence is located at a distance from the terminal loop of the ctRNA secondary structure. The ctRNA structure predicted by the mfold program suggests the possible generation of a terminal and an internal hairpin loop. The amount of in vitro translation product of repB mRNA was inversely proportional to the ctRNA concentration. Mutations in the terminal and internal hairpin loops of the ctRNA had inhibitory effects on its binding to the target mRNA. We propose that the intact structures of the terminal and internal hairpin loops, respectively, play important roles in forming the initial kissing and extending complexes between the ctRNA and target mRNA and that these regulate the copy number of this plasmid.

The SL1 Stem-Loop Structure at the 5′-End of Potato virus X RNA Is Required for Efficient Binding to Host Proteins and forViral Infectivity

  • Kwon, Sun-Jung;Kim, Kook-Hyung
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.63-75
    • /
    • 2006
  • The 5′-region of Potato virus X (PVX) RNA, which contains an AC-rich, single-stranded region and stem-loop structure 1 (SL1), affects RNA replication and assembly. Using Systemic Evolution of Ligands by EXponential enrichment (SELEX) and the electrophoretic mobility shift assay, we demonstrate that SL1 interacts specifically with tobacco protoplast protein extracts (S100). The 36 nucleotides that correspond to the top region of SL1, which comprises stem C, loop C, stem D, and the tetra loop (TL), were randomized and bound to the S100. Remarkably, the wild-type (wt) sequence was selected in the second round, and the number of wt sequences increased as selection proceeded. All of the selected clones from the fifth round contained the wt sequence. Secondary structure predictions (mFOLD) of the recovered sequences revealed relatively stable stem-loop structures that resembled SL1, although the nucleotide sequences therein were different. Moreover, many of the clones selected in the fourth round conserved the TL and C-C mismatch, which suggests the importance of these elements in host protein binding. The SELEX clone that closely resembled the wt SL1 structure with the TL and C-C mismatch was able to replicate and cause systemic symptoms in plants, while most of the other winners replicated poorly only on inoculated leaves. The RNA replication level on protoplasts was also similarly affected. Taken together, these results indicate that the SL1 of PVX interacts with host protein(s) that play important roles related to virus replication.

Harnessing CRISPR-Cas adaptation for RNA recording and beyond

  • Gyeong-Seok Oh;Seongjin An;Sungchul Kim
    • BMB Reports
    • /
    • v.57 no.1
    • /
    • pp.40-49
    • /
    • 2024
  • Prokaryotes encode clustered regularly interspaced short palindromic repeat (CRISPR) arrays and CRISPR-associated (Cas) genes as an adaptive immune machinery. CRISPR-Cas systems effectively protect hosts from the invasion of foreign enemies, such as bacteriophages and plasmids. During a process called 'adaptation', non-self-nucleic acid fragments are acquired as spacers between repeats in the host CRISPR array, to establish immunological memory. The highly conserved Cas1-Cas2 complexes function as molecular recorders to integrate spacers in a time course manner, which can subsequently be expressed as crRNAs complexed with Cas effector proteins for the RNA-guided interference pathways. In some of the RNA-targeting type III systems, Cas1 proteins are fused with reverse transcriptase (RT), indicating that RT-Cas1-Cas2 complexes can acquire RNA transcripts for spacer acquisition. In this review, we summarize current studies that focus on the molecular structure and function of the RT-fused Cas1-Cas2 integrase, and its potential applications as a directional RNA-recording tool in cells. Furthermore, we highlight outstanding questions for RT-Cas1-Cas2 studies and future directions for RNA-recording CRISPR technologies.

Post-transcriptional and post-translational regulation during mouse oocyte maturation

  • Kang, Min-Kook;Han, Seung-Jin
    • BMB Reports
    • /
    • v.44 no.3
    • /
    • pp.147-157
    • /
    • 2011
  • The meiotic process from the primordial stage to zygote in female germ cells is mainly adjusted by post-transcriptional regulation of pre-existing maternal mRNA and post-translational modification of proteins. Several key proteins such as the cell cycle regulator, Cdk1/cyclin B, are post-translationally modified for precise control of meiotic progression. The second messenger (cAMP), kinases (PKA, Akt, MAPK, Aurora A, CaMK II, etc), phosphatases (Cdc25, Cdc14), and other proteins (G-protein coupled receptor, phosphodiesterase) are directly or indirectly involved in this process. Many proteins, such as CPEB, maskin, eIF4E, eIF4G, 4E-BP, and 4E-T, post-transcriptionally regulate mRNA via binding to the cap structure at the 5' end of mRNA or its 3' untranslated region (UTR) to generate a closed-loop structure. The 3' UTR of the transcript is also implicated in post-transcriptional regulation through an association with proteins such as CPEB, CPSF, GLD-2, PARN, and Dazl to modulate poly(A) tail length. RNA interfering is a new regulatory mechanism of the amount of mRNA in the mouse oocyte. This review summarizes information about post-transcriptional and post-translational regulation during mouse oocyte meiotic maturation.

NMR methods for structural analysis of RNA: a Review

  • Kim, Nak-Kyoon;Nam, Yun-Sik;Lee, Kang-Bong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.1
    • /
    • pp.5-9
    • /
    • 2014
  • In last three decades, RNA molecules have been revealed to play the central roles in many cellular processes. Structural understanding of RNA molecules is essential to interpret their functions, and many biophysical techniques have been adopted for this purpose. NMR spectroscopy is a powerful tool to study structures and dynamics of RNA molecules, and it has been further applied to study tertiary interactions between RNA molecules, RNA-protein, and RNA-small molecules. This short article accounts for the general methods for NMR sample preparations, and also partially covers the resonance assignments of structured RNA molecules.

Genetic Differentiation among the Mitochondrial ND2 Gene and $tRNA^{Trp}$ Gene Sequences of Genus Rana (Anura) in Korea

  • Lee, Hyuk;Yang, Suh-Yung;Lee, Hei-Yung
    • Animal cells and systems
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 2000
  • The genetic variations among six species of Rana from Korea (R. nigro-maculata, R. piancyi, R. dybowskii, R. sp, R. rugosa type A, B and R. amurensis) were investigated using 499 bases of mitochondrial DNA sequences for ND2 (NADH dehydrogenase subunit 2) gene and $tRNA^{Trp}$ gene. Partial sequences of ND2 gene (427 bp) and full sequences of $tRNA^{Trp}$ gene (73 bp) were identified. The level of sequence divergences ranged from 0.2 to 5.2% within species and 4.9-28.0% among 6 species of the genus Rana. The $tRNA^{Trp}$ gene of the genus Rana was composed of 77 nucleotides which showed a two dimensional "cloverleaf" structure. The secondary structure of $tRNA^{Trp}$ was not found compensatory changes which could potentially confound phylogenetic inference. In the neighborjoining tree, brown frogs were clustered first with the level of sequence divergence of 13.20% between R. amurensis and R. dybowskii, and 9% between R. dybowskii and R. sp. supported by 99% bootstrap iterations, respectively. R. nigromaculata and R. plancyi were clustered into another group with 5.1% divergence supported by 100% bootstrap iteration. R. rugosa A 8nd B types were grouped by 4.9% divergence and clustered into the last group with other two groups with 100% bootstrap iterations.

  • PDF

The Genetic Organization of the Linear Mitochondrial Plasmid mlp1 from Pleurotus ostreatus NFFA2

  • Kim, Eun-Kyoung;Youn, Hye-Sook;Koo, Yong-Bom;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.264-270
    • /
    • 1997
  • The structure of plasmid mlp1, a linear 10.2kb mitochondrial plasmid of Pleurotus ostreatus NFF A2 was determined by restriction enzyme mapping and partial sequencing. The plasmid encodes at least two proteins; a putative RNA polymerase showing homology to yeast mitochondrial RNA polymerase and to viral-encoded RNA polymerases, and a putative DNA polymerase showing significant homology to the family B thpe DNA polymerases. It also contains terminal inverted repeat sequences at both ends which are longer than 274 bp. A 1.6 kb EcoRI restriction fragment of m1p1 containing the putative RNA polymerase gene did not hybridize to the nuclear or motochondrial genomes from P. ostreatus, suggesting that it may encode plasmidspecific RNA polymerase. The gene fragment also did not hybridize with the RNA polymerase gene (RPO41) from Saccaromyces cerevisiae. The relationship between genes in m1p1 and those in another linear plasmid pC1K1 of Claviceps purpurea was examined by DNA hybridization. The result indicates that the genes for DNA and RNA polymerases are not closely related with those in C. purpurea.

  • PDF