• 제목/요약/키워드: RNA, small interfering

검색결과 154건 처리시간 0.021초

The epigenetic phenotypes in transgenic Nicotiana benthamiana for CaMV 35S-GFP are mediated by spontaneous transgene silencing

  • Sohn, Seong-Han;Choi, Min-Sue;Kim, Kook-Hyung;Lomonossoff, George
    • Plant Biotechnology Reports
    • /
    • 제5권3호
    • /
    • pp.273-281
    • /
    • 2011
  • Diverse epigenetic phenotypes are frequently found during research on transgenic plants. To understand the factors underlying such diversity, hundreds of independent 35S-GFP transgenic N. benthamiana plants were analyzed. The diverse GFP-expression phenotypes of the transgenic plants were classified into three major types based on the GFP expression patterns and their response to 35S-GFP agroinfiltration: steady-green, silenced and non-uniform phenotype. The non-uniform phenotype was further sub-divided into five minor phenotypes: variegated, red-dropped, on-silencing, partitioned and misty, according to the distribution of GFP expression on the leaves. Many of transgenic plants continuously generated diverse phenotypes over several generations despite the transgene identity. Such epigenetic GFP phenotyping was found to be the result of spontaneous transgene silencing mediated by either or both of post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS). This finding was verified by the detection of 21- and 24-nt small interfering RNA (siRNA) molecules, and DNA methylation in the transgenic plants that showed repeated epigenetic variation. Agroinfiltration demonstrated that irregular distribution of GFP on a leaf was the result of erratic transgene silencing, and the technique also proved to be a rapid and effective method for selecting fully silenced plants within 3 days. Furthermore, two novel phenotypes described are potential materials for in-depth investigations into the genes and mechanisms responsible for spontaneous transgene silencing.

Annexin A2 gene interacting with viral matrix protein to promote bovine ephemeral fever virus release

  • Chen, Lihui;Li, Xingyu;Wang, Hongmei;Hou, Peili;He, Hongbin
    • Journal of Veterinary Science
    • /
    • 제21권2호
    • /
    • pp.33.1-33.15
    • /
    • 2020
  • Bovine ephemeral fever virus (BEFV) causes bovine ephemeral fever, which can produce considerable economic damage to the cattle industry. However, there is limited experimental evidence regarding the underlying mechanisms of BEFV. Annexin A2 (AnxA2) is a calcium and lipid-conjugated protein that binds phospholipids and the cytoskeleton in a Ca2+-dependent manner, and it participates in various cellular functions, including vesicular trafficking, organization of membrane domains, and virus proliferation. The role of the AnxA2 gene during virus infection has not yet been reported. In this study, we observed that AnxA2 gene expression was up-regulated in BHK-21 cells infected with the virus. Additionally, overexpression of the AnxA2 gene promoted the release of mature virus particles, whereas BEFV replication was remarkably inhibited after reducing AnxA2 gene expression by using the small interfering RNA (siRNA). For viral proteins, overexpression of the Matrix (M) gene promotes the release of mature virus particles. Moreover, the AnxA2 protein interaction with the M protein of BEFV was confirmed by GST pull-down and co-immunoprecipitation assays. Experimental results indicate that the C-terminal domain (268-334 aa) of AxnA2 contributes to this interaction. An additional mechanistic study showed that AnxA2 protein interacts with M protein and mediates the localization of the M protein at the plasma membrane. Furthermore, the absence of the AnxA2-V domain could attenuate the effect of AnxA2 on BEFV replication. These findings can contribute to elucidating the regulation of BEFV replication and may have implications for antiviral strategy development.

Nicotinamide Mononucleotide Adenylyl Transferase 2 Inhibition Aggravates Neurological Damage after Traumatic Brain Injury in a Rat Model

  • Xiaoyu Gu;Haibo Ni;XuGang Kan;Chen Chen;Zhiping Zhou;Zheng Ding;Di Li;Bofei Liu
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권4호
    • /
    • pp.400-408
    • /
    • 2023
  • Objective : Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is a crucial factor for the survival of neuron. The role of NMNAT2 in damage following traumatic brain injury (TBI) remains unknown. This study was designed to investigate the role of NMNAT2 in TBI-induced neuronal degeneration and neurological deficits in rats. Methods : The TBI model was established in Sprague-Dawley rats by a weight-dropping method. Real-time polymerase chain reaction, western blot, immunofluorescence, Fluoro-Jade C staining, and neurological score analyses were carried out. Results : NMNAT2 mRNA and protein levels were increased in the injured-side cortex at 6 hours and peaked 12 hours after TBI. Knocking down NMNAT2 with an injection of small interfering RNA in lateral ventricle significantly exacerbated neuronal degeneration and neurological deficits after TBI, which were accompanied by increased expression of BCL-2-associated X protein (Bax). Conclusion : NMNAT2 expression is increased and NMNAT2 exhibits neuroprotective activity in the early stages after TBI, and Bax signaling pathway may be involved in the process. Thus, NMNAT2 is likely to be an important target to prevent secondary damage following TBI.

MicroRNA-301b promotes cell proliferation and apoptosis resistance in triple-negative breast cancer by targeting CYLD

  • Song, Hongming;Li, Dengfeng;Wu, Tianqi;Xie, Dan;Hua, Kaiyao;Hu, Jiashu;Deng, Xiaochong;Ji, Changle;Deng, Yijun;Fang, Lin
    • BMB Reports
    • /
    • 제51권11호
    • /
    • pp.602-607
    • /
    • 2018
  • Aberrant expression of microRNAs (miRNAs) plays important roles in carcinogenesis and tumor progression. However, the expression and biological role of miR-301b in triple-negative breast cancer (TNBC) remains unclear. Here we aimed to evaluate the roles and mechanisms of miR-301b in TNBC cells. miR-301b expression was assessed in TNBC specimens and cell lines by quantitative Real-Time PCR (qRT-PCR). TNBC cells were transfected with miR-301b mimics, inhibitors or Cylindromatosis (CYLD) small interfering RNA (siRNA) using Lipofectamine 2000. The functional roles of miR-301b were determined by cell proliferation, colony formation, and apoptosis assays. Western blots and qRT-PCR were used to measure the expression of mRNAs and proteins in the cells. We found that miR-301b was upregulated in TNBC specimens and cell lines. Overexpression of miR-301b promoted cell proliferation in TNBC cells, while inhibited the apoptosis induced by 5-FU. CYLD was downregulated by miR-301b at both mRNA and protein levels in TNBC cells. Dual-luciferase report assay confirmed that miR-301b downregulated CYLD by direct interaction with the 3'-untranslated region(3'-UTR) of CYLD mRNA. $NF-{\kappa}B$ activation was mechanistically associated with miR-301b-mediated downregulation of CYLD. However, inhibition of miR-301b reversed all the effects of miR-301b. In conclusion, miR-301b plays an oncogenic role in TNBC possibly by downregulating CYLD and subsequently activating $NF-{\kappa}B$ p65, and this may provide a novel therapeutic approach for TNBC.

MicroRNA-21 promotes epithelial-mesenchymal transition and migration of human bronchial epithelial cells by targeting poly (ADP-ribose) polymerase-1 and activating PI3K/AKT signaling

  • Zhang, Shiqing;Sun, Peng;Xiao, Xinru;Hu, Yujie;Qian, Yan;Zhang, Qian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권4호
    • /
    • pp.239-253
    • /
    • 2022
  • Epithelial-mesenchymal transition (EMT) is known to be involved in airway remodeling and fibrosis of bronchial asthma. However, the molecular mechanisms leading to EMT have yet to be fully clarified. The current study was designed to reveal the potential mechanism of microRNA-21 (miR-21) and poly (ADP-ribose) polymerase-1 (PARP-1) affecting EMT through the PI3K/AKT signaling pathway. Human bronchial epithelial cells (16HBE cells) were transfected with miR-21 mimics/inhibitors and PARP-1 plasmid/small interfering RNA (siRNA). A dual luciferase reporter assay and biotin-labeled RNA pull-down experiments were conducted to verify the targeting relationship between miR-21 mimics and PARP-1. The migration ability of 16HBE cells was evaluated by Transwell assay. Quantitative real-time polymerase chain reaction and Western blotting experiments were applied to determine the expression of Snail, ZEB1, E-cadherin, N-cadherin, Vimentin, and PARP-1. The effects of the PI3K inhibitor LY294002 on the migration of 16HBE cells and EMT were investigated. Overexpression of miR-21 mimics induced migration and EMT of 16HBE cells, which was significantly inhibited by overexpression of PARP-1. Our findings showed that PARP-1 was a direct target of miR-21, and that miR-21 targeted PARP-1 to promote migration and EMT of 16HBE cells through the PI3K/AKT signaling pathway. Using LY294002 to block PI3K/AKT signaling pathway resulted in a significant reduction in the migration and EMT of 16HBE cells. These results suggest that miR-21 promotes EMT and migration of HBE cells by targeting PARP-1. Additionally, the PI3K/AKT signaling pathway might be involved in this mechanism, which could indicate its usefulness as a therapeutic target for asthma.

캐너비노이드 수용체 CB2의 신호전달작용에 미치는 RGS3의 억제적 효과 (RGS3 Suppresses cAMP Response Element (CRE) Activity Mediated by CB2 Cannabinoid Receptor in HEK293 Cells)

  • 김성대;이휘민;메하리 엔델;조재열;박화진;오재욱;이만휘
    • 생명과학회지
    • /
    • 제19권11호
    • /
    • pp.1506-1513
    • /
    • 2009
  • RGS단백질은 G 단백질 신호전달작용에 있어서 신호를 억제하는 조절단백질로서 G 단백질 매개수용체(GPCR)의 활성을 억제하는 것으로 알려졌다. 그렇지만 캐너비노이드 수용체 CB2의 활성에 있어서 RGS 단백질의 조절효과에 관해서는 지금까지 알려져 있지 않다. 그러므로 본 연구에서 우리는 RGS2, 3, 4, 5와 캐너비노이드 수용체 CB2 cDNA를 동시에 HEK293 세포주에 발현시킨 후 각 RGS 단백질의 효과를 조사하였다. CB2 단백질을 발현하는 HEK293 세포주(CB2-HEK293)에서 CB2 효현제인 WIN55,212-2는 폴스콜린으로 유도된 cAMP response element (CRE) 활성을 억제하였다. 이러한 WIN55,212-2의 CRE 억제 활성은 RGS3에 의하여 차단되었지만 RGS2, 4, 및 RGS5에서는 관찰되지 않았다. 뿐만 아니라 RGS3 small interference RNA (siRNA)를 사용하여 내인성 RGS3 단백질의 발현을 저하시키면 WIN55,212-2에 의한 폴스콜린 유도 CRE 억제활성은 더욱 증강되었다. 이상의 결과는 캐너비노이드 수용체 CB2 신호전달작용에 있어서 RGS 단백질의 기능적 역할과 특히 내인성 RGS3의 캐너비노이드 수용체 CB2에 대한 선택적 작용을 나타낸다.

인간 자궁내막의 탈락막화에서 HOXA10 유전자의 역할 (Role of HOXA Gene in Human Endometrial Decidualization)

  • 이창세;박동욱;박찬우;김태진
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제37권3호
    • /
    • pp.207-216
    • /
    • 2010
  • 목 적: Small interfering RNA (siRNA)를 이용하여 homeobox (HOXA) 10 유전자의 발현이 억제된 일차배양 자궁내막 세포를 이용하여 자궁내막 탈락막화 (decidualization)에 HOXA유전자를 포함한 세포 내 신호전달기전을 분석하고자 하였다. 연구방법: 본원 산부인과에서 자궁내막 질환 이외의 이유로 전자궁 적출술을 받은 환자의 자궁내막 조직을 채취한다. $37^{\circ}C$에서 20분간 Trypsin-EDTA를 처리하여 단일세포로 분리한 후 10% fetal bovine serum이 첨가된 DMEM/F12 배지를 이용하여 24시간 동안 $37^{\circ}C$ 5% $CO_2$ 배양기 안에서 배양한다. 배양된 자궁내막 세포를 HOXA10 siRNA로 첨가한 후 TGF-${\beta}1$을 10 ng/mL 농도로 48시간 첨가하여 탈락막화를 유도한다. 배양된 자궁내막 세포에서 reverse transcription polymerase chain reaction을 이용하여 HOXA10, prolactin, cyclooxygenase (COX)-2, peroxisome proliferator-activated receptor (PPAR)-$\gamma$ 및 wingless-type MMTV integration site family (Wnt)의 발현을 관찰하였다. 결 과: HOXA10의 경우 transforming growth factor (TGF)-${\bata}1$과 HOXA10 siRNA를 처리하지 않은 대조군에 비하여 TGF-${\beta}1$을 처리한 군에서 약 1.8배 가량 발현양의 증가를 보였다. 자궁내막 탈락막 표지인자로 알려져 있는 prolactin의 경우 TGF-${\beta}1$을 처리한 경우 대조군에 비하여 유의한 발현의 증가를 보였으며 HOXA10 siRNA를 처리한 군에 있어서는 TGF-${\beta}1$을 첨가하더라도 prolactin mRNA의 발현양의 증가를 관찰할 수 없었다. 또한 자궁내막 세포의 분화인자로 알려져 있는 COX-2의 발현 역시 HOXA10 siRNA를 처리한 군에 있어서 mRNA 발현양이 유의하게 감소하였으며 TGF-${\beta}1$을 처리하여도 발현의 증가를 관찰할 수 없었다. Wnt4의 경우 HOXA10 siRNA를 이용하여 HOXA10의 발현을 억제한 경우 대조군에 비하여 유의하게 mRNA의 발현양이 감소하였으며 이러한 발현양의 감소는 TGF-${\beta}1$을 처리하여도 증가됨을 관찰할 수 없었다. PPAR$\gamma$의 발현은 HOXA10 siRNA의 처리와 관계없이 TGF-${\beta}1$에 의하여 감소하는 것을 관찰할 수 있었다. 결 론: Progesterone에 의하여 자궁내막 상피세포에서 분비되는 것으로 알려져 있는 TGF-${\beta}1$에 의한 자궁내막 기질세포의 분화 (탈락막화)는 HOXA10 및 Wnt에 의하여 조절되는 것으로 생각된다.

Expression of Egr3 in mouse gonads and its localization and function in oocytes

  • Shin, Hyejin;Seol, Dong-Won;Nam, Minyeong;Song, Haengseok;Lee, Dong Ryul;Lim, Hyunjung Jade
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권6호
    • /
    • pp.781-787
    • /
    • 2017
  • Objective: The early growth response (Egr) family consists of four members (Egr1, Egr2, Egr3, and Egr4) that are zinc finger transcription factors. Among them, Egr3 is involved in transcriptional regulation of target genes during muscle spindle formation and neurite outgrowth. We previously showed that the immunoreactive Egr3 is localized on oocyte spindle and accumulate near the microtubule organizing center during meiosis I in mice. Egr3 was also shown to be localized on spermatocytes. We herein investigated if Egr3 is expressed in mouse gonads and if Egr3 blockade results in any defect in oocyte maturation. Methods: Expression of Egr3 in mouse gonads was examined by reverse transcription-polymerase chain reaction. Full-length Egr3 and truncated Egr3 (${\Delta}Egr3$) complementary RNAs (cRNAs) with Xpress tag at N-terminus and DsRed2 at C-terminus, and small interfering RNA (siRNA) targeting Egr3 were microinjected into mouse oocytes at germinal vesicle stage. Localization of microinjected Egr3 was examined by confocal live imaging and immunofluorescence staining. Results: Egr3 mRNA was detected in mouse ovaries and testes from 1 to 4 week-old mice. An uncharacterized longer transcript containing 5'untranslated region was also detected in 3 and 4 week-old gonads. Microinjected Xpress-Egr3-DsRed2 or Xpress-${\Delta}Egr3$-DsRed2 localized to nuclei and chromosomes during meiotic progression. Microinjection of these cRNAs or Egr3 siRNA in oocytes did not affect meiotic maturation. Immunofluorescence staining of Egr3 in Xpress-${\Delta}Egr3$-DsRed2-injected oocytes showed a positive signal only on meiotic spindle, suggesting that this antibody does not detect endogenous or exogenous Egr3 in mouse oocytes. Conclusion: The results show that Egr3 localizes to chromosomes during meiotic progression and that certain antibodies may not faithfully represent localization of target proteins in oocytes. Egr3 seems to be dispensable during oocyte maturation in mice.

Impact of Cellular Genetic Make-up on Colorectal Cancer Cell Lines Response to Ellagic Acid: Implications of small interfering RNA

  • Yousef, Amany I;El-Masry, Omar S;Abdel Mohsen, Mohamed A
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권2호
    • /
    • pp.743-748
    • /
    • 2016
  • Background: $K^-Ras$ activation is an early event in colorectal carcinogenesis and associated mutations have been reported in about 40% of colorectal cancer patients. These mutations have always been responsible for enhancing malignancy and silencing them is associated with attenuation of tumorigenicity. Among downstream effectors are the RAF/MEK/ERK and the PI3K/Akt signaling pathways. PI3K/Akt signaling leads to reduction of apoptosis, stimulated cell growth and enhanced proliferation. Ellagic acid (EA), a naturally occurring antioxidant, has recently emerged as a promising anti-cancer agent. Purpose: To evaluate the impact of cellular genetic makeup of two colon cancer cell lines with different genetic backgrounds, HCT-116 ($K^-Ras^-/p53^+$) and Caco-2 ($K^-Ras^+/p53^-$), on response to potential anti-tumour effects of EA. In addition, the influence of $K^-Ras$ silencing in HCT-116 cells was investigated. Materials and Methods: Cellular proliferation, morphology and cell cycle analysis were carried out in addition to Western blotting for detecting total Akt and p-Akt (at Thr308 and Ser473) in the presence and absence of different concentrations of EA. Cell proliferation was also assessed in cells transfected with different concentrations of $K^-Ras$ siRNA or incubated with ellagic acid following transfection. Results: The results of the present study revealed that EA exerts anti-proliferative and dose-dependent pro-apoptotic effects. Cytostatic and cytotoxic effects were also observed. p-Akt (at Thr308 and Ser473) was downregulated. Moreover, EA treatment was found to (i) reduce $K^-Ras$ protein expression; (ii) in cells transfected with siRNA and co-treated with EA, pronounced anti-proliferative effects as well as depletion of p-Akt (at Thr308) were detected. Conclusions: Cellular genetic makeup ($K^-Ras^-/p53^-$) was not likely to impose limitations on targeting EA in treatment of colon cancer. EA had a multi-disciplinary pro-apoptotic anti-proliferative approach, having inhibited Akt phosphorylation, induced cell cycle arrest and showed an anti-proliferative potential in HCT-116 cells (expressing mutant $K^-Ras$).

Effects of PLCE1 Gene Silencing by RNA Interference on Cell Cycling and Apoptosis in Esophageal Carcinoma Cells

  • Zhao, Li;Wei, Zi-Bai;Yang, Chang-Qing;Chen, Jing-Jing;Li, Dan;Ji, Ai-Fang;Ma, Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권13호
    • /
    • pp.5437-5442
    • /
    • 2014
  • Esophageal squamous cell carcinoma (ESCC) is one of the most malignancies with a poor prognosis. The phospholipase $C{\varepsilon}$ gene (PLCE1) encodes a novel ras-related protein effector mediating the effects of R-Ras on the actin cytoskeleton and membrane protrusion. However, molecular mechanisms pertinent to ESCC are unclear. We therefore designed PLCE1-special small interfering RNA and transfected to esophageal squamous cell (EC) 9706 cells to investigat the effects of PLCE1 gene silencing on the cell cycle and apoptosis of ESCC and indicate its important role in the development of ESCC. Esophageal cancer tissue specimens and normal esophageal mucosa were obtained and assayed by immunohistochemical staining to confirm overexpression of PLCE1 in neoplasias. Fluorescence microscopy was used to examine transfection efficiency, while the result of PLCE1 silencing was examined by reverse transcription (RT-PCR). Flow cytometry and annexin V apoptosis assays were used to assess the cell cycle and apoptosis, respectively. Expression of cyclin D1 and caspase-3 was detected by Western-blotting. The level of PLCE1 protein in esophageal cancer tissue was significantly higher than that in normal tissue. After transfection, the expression of PLCE1 mRNA in EC 9706 was significantly reduced, compared with the control group. Furthermore, flow cytometry results suggested that the PLCE1 gene silencing arrested the cell cycle in the G0/G1 phase; apoptosis was significantly higher than in the negative control group and mock group. PLCE1 gene silencing by RNAi resulted in decreased expression of cyclin D1 and increased expression of caspase-3. Our study suggests that PLCE1 may be an oncogene and play an important role in esophageal carcinogenesis through regulating proteins which control cell cycling and apoptosis.