• 제목/요약/키워드: RNA, Untranslated

검색결과 129건 처리시간 0.027초

microRNA-214-mediated UBC9 expression in glioma

  • Zhao, Zhiqiang;Tan, Xiaochao;Zhao, Ani;Zhu, Liyuan;Yin, Bin;Yuan, Jiangang;Qiang, Boqin;Peng, Xiaozhong
    • BMB Reports
    • /
    • 제45권11호
    • /
    • pp.641-646
    • /
    • 2012
  • It has been reported that ubiquitin-conjugating enzyme 9 (Ubc9), the unique enzyme2 in the sumoylation pathway, is up-regulated in many cancers. However, the expression and regulation of UBC9 in glioma remains unknown. In this study, we found that Ubc9 was up-regulated in glioma tissues and cell lines compared to a normal control. UBC9 knockdown by small interfering RNA (siRNA) affected cell proliferation and apoptosis in T98G cells. Further experiments revealed that microRNA (miR)-214 directly targeted the 3' untranslated region (UTR) of UBC9 and that there was an inverse relationship between the expression levels of miR-214 and UBC9 protein in glioma tissues and cells. miR-214 overexpression suppressed the endogenous UBC9 protein and affected T98G cell proliferation. These findings suggest that miR-214 reduction facilitates UBC9 expression and is involved in the regulation of glioma cell proliferation.

A Candidate Single Nucleotide Polymorphism in the 3' Untranslated Region of Stearoyl-CoA Desaturase Gene for Fatness Quality and the Gene Expression in Berkshire Pigs

  • Lim, Kyu-Sang;Kim, Jun-Mo;Lee, Eun-A;Choe, Jee-Hwan;Hong, Ki-Chang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권2호
    • /
    • pp.151-157
    • /
    • 2015
  • Fatness qualities in pigs measured by the amount of fat deposition and composition of fatty acids (FAs) in pork have considerable effect on current breeding goals. The stearoyl-CoA desaturase (SCD) gene plays a crucial role in the conversion of saturated FAs into monounsaturated FAs (MUFAs), and hence, is among the candidate genes responsible for pig fatness traits. Here, we identified a single nucleotide polymorphism (SNP, $c.^*2041T$ >C) in the 3' untranslated region by direct sequencing focused on coding and regulatory regions of porcine SCD. According to the association analysis using a hundred of Berkshire pigs, the SNP was significantly associated with FA composition (MUFAs and polyunsaturated FAs [PUFAs]), polyunsaturated to saturated (P:S) FA ratio, n-6:n-3 FA ratio, and extent of fat deposition such as intramuscular fat and marbling (p<0.05). In addition, the SNP showed a significant effect on the SCD mRNA expression levels (p = 0.041). Based on our results, we suggest that the SCD $c.^*2041T$ >C SNP plays a role in the gene regulation and affects the fatness qualities in Berkshire pigs.

토마토에서 분리된 담배 모자이크 바이러스 외피단백질 유전자의 cDNA 클로닝 및 염기서열 분석 (Complementary DNA Cloning and Nucleotide Sequence Analysis of Coat Protein Gene from TMV Tomato Strain)

  • 이청호;이영기;강신웅;박은경
    • 한국연초학회지
    • /
    • 제18권2호
    • /
    • pp.101-106
    • /
    • 1996
  • Tobacco mosaic virus (TMV) tomato strain was isolated from tomato "Seo-Kwang" in Korea. The virion was purified by density gradient centrifugation, and total viral RNA was isolated from the purified particles. Coat protein (CP) cDNA of the virus was synthesized by RT-PCR, and the purified cDNA fragment was subcloned to pBluescript II SK-. The analysis of nucleotide sequence showed that this cDNA was 693 nucleotides long from the insert of clone p1571 and p1572 which contain complete codons of the viral coat protein gene (474 nucleotides) and 3' untranslated region. The nucleotides of coat protein encoding cDNA of the strain were 6 nucleotides less than that of TMV common strain isolated from tobacco plant in Korea. The CP gene showed 70% maximum homology with that of the common strain in the nucleotide level and 86% maximum homology in amino acid level.cid level.

  • PDF

Protein Interaction Mapping of Translational Regulators Affecting Expression of the Critical Stem Cell Factor Nos

  • Malik, Sumira;Jang, Wijeong;Kim, Changsoo
    • 한국발생생물학회지:발생과생식
    • /
    • 제21권4호
    • /
    • pp.449-456
    • /
    • 2017
  • The germline stem cells of the Drosophila ovary continuously produce eggs throughout the life-span. Intricate regulation of stemness and differentiation is critical to this continuous production. The translational regulator Nos is an intrinsic factor that is required for maintenance of stemness in germline stem cells. Nos expression is reduced in differentiating cells at the post-transcriptional level by diverse translational regulators. However, molecular mechanisms underlying Nos repression are not completely understood. Through three distinct protein-protein interaction experiments, we identified specific molecular interactions between translational regulators involved in Nos repression. Our findings suggest a model in which protein complexes assemble on the 3' untranslated region of Nos mRNA in order to regulate Nos expression at the post-transcriptional level.

Cell Cycle Regulated Expression of Subcloned Chicken H3 Histone Genes and Their 5' Flanking Sequences

  • Son, Seung-Yeol;Tae, Gun-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권4호
    • /
    • pp.274-277
    • /
    • 1994
  • We subcloned two chicken H3 histone genes and transfected them into Rat 3 cell line. One contains 300 bp 5' to its cap site and the other contains 130 bp 5' to its cap site when cloned into plasm ids. Both of them showed 5' phase specific expression of their mRNA about 8 fold higher (during 5' phase) than during Gl phase. This means that only 130 bp 5' to its cap site was enough to confer cell cycle regulated expression of the latter gene. The DNA sequences of their 5' flanking region did not reveal any particular homologies or subtype-specific sequences. The DNA sequence data also showed that even though the protein coding regions of the histone genes have been conserved exceptionally well throughout evolution, their 5' untranslated regions have not been conserved as well.

  • PDF

Roles of non-coding RNAs in intercellular crosstalk in cardiovascular diseases

  • Yeong-Hwan Lim;Young-Kook Kim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권4호
    • /
    • pp.289-298
    • /
    • 2023
  • Complex diseases including cardiovascular disease are caused by a combination of the alternation of many genes and the influence of environments. Recently, non-coding RNAs (ncRNAs) have been shown to be involved in diverse diseases, and the functions of various ncRNAs have been reported. Many researchers have elucidated the mechanisms of action of these ncRNAs at the cellular level prior to in vivo and clinical studies of the diseases. Due to the characteristics of complex diseases involving intercellular crosstalk, it is important to study communication between multiple cells. However, there is a lack of literature summarizing and discussing studies of ncRNAs involved in intercellular crosstalk in cardiovascular diseases. Therefore, this review summarizes recent discoveries in the functional mechanisms of intercellular crosstalk involving ncRNAs, including microRNAs, long non-coding RNAs, and circular RNAs. In addition, the pathophysiological role of ncRNAs in this communication is extensively discussed in various cardiovascular diseases.

돼지 $\beta$-Casein 유전자의 3' 말단 부위의 cis-Acting Element가 유선 상피 세포내의 발현에 미치는 영향 (Effects of the cis-Acting Element in the 3' End of Porcine $\beta$-Casein Gene on the Expression in Mammary Epithelial Cells)

  • 이휘철;김병주;변승준;이승훈;김민지;정희경;이현기;조수진;장원경;박진기;이풍연
    • Reproductive and Developmental Biology
    • /
    • 제32권3호
    • /
    • pp.153-158
    • /
    • 2008
  • 형질 전환 동물 생산에는 조직 및 시기 특이적 발현 조절이 가능하다는 장점 때문에 유즙 내로 외부 유전자를 발현시키는 시스템이 널리 이용되고 있다. 유전자 발현 즉, 단백질 생산은 프로모터의 강도뿐만 아니라 mRNA의 안정성에 의해서도 조절된다. 특히, polyadenylation에 의한 poly A의 길이는 in vivo와 올 in vitro에서 mRNA 안정성 및 목적 유전자의 번역효율에 영향을 준다. 본 연구에서는 이러한 mRNA 안정성이 목적 유전자의 발현에 미치는 영향을 알아보기 위해 3'-UTR 염기 서열을 분석하였다. 이 3'-untranslated region(UTR) 내의 poly A signal을 기준으로 putative cytoplasmic polyadenylation element(CPE) 부위와 downstream elements(DSE: U-rich, G-rich, GU-rich)의 염기 서열을 분석하고, 각각의 element를 기준으로 15 종의 luciferase reporter vector를 제작하여, 생쥐 유선 세포주(HC11)와 돼지 유선 세포주(PMGC)에 각각 transfection시킨 후 48시간 동안 배양하고 luciferase 발현량을 분석하였다. PMGC의 경우, luciferase의 발현은 exon 9의 CPE 2,3 및 DSE 1을 포함한 #6 construct에서 유의적으로 높은 발현량을 보였으며, exon 9의 CPE 2, 3과 DSE를 모두 포함하고 있는 #11 construct에서도 유의적으로 높은 발현량을 보였다. 이러한 결과는 형질 전환 돼지 생산에 있어 #6 및 11 construct의 사용은 목적의 유전자를 효과적으로 발현시키는데 기여할 것으로 사료된다.

MiR-454 Prompts Cell Proliferation of Human Colorectal Cancer Cells by Repressing CYLD Expression

  • Liang, Hong-Liang;Hu, Ai-Ping;Li, Sen-Lin;Xie, Jia-Ping;Ma, Qing-Zhu;Liu, Ji-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2397-2402
    • /
    • 2015
  • Previous studies have shown that miR-454 plays an important role in a variety of biological processes in various human cancer cells. However, the underlying mechanisms of this microRNA in colorectal cancer (CRC) cells remain largely unknown. In the present study, we investigated the miR-454 role in CRC cell proliferation. We found that miR-454 expression is markedly upregulated in CRC tissues and CRC cells compared with the matched tumor adjacent tissues and the FHC normal colonic cell line. Ectopic expression of miR-454 promoted the proliferation and anchorage-independent growth of CRC cells, whereas inhibition of miR-454 reduced this effect. Bioinformatics analysis further revealed cylindromatosis (CYLD), a putative tumor suppressor as a potential target of miR-454. Data from luciferase reporter assays showed that miR-454 directly binds to the 3'-untranslated region (3'-UTR) of CYLD mRNA and repressed expression at both transcriptional and translational levels. In functional assays, CYLD-silenced in miR-454-in-transfected SW480 cells have positive effect to promote cell proliferation, suggesting that direct CYLD downregulation is required for miR-454-induced CRC cell proliferation. In sum, our data provide compelling evidence that miR-454 functions as an onco-miRNA, playing a crucial role in the promoting cell proliferation in CRC, and its oncogenic effect is mediated chiefly through direct suppression of CYLD expression.

microRNA for determining the age-related myogenic capabilities of skeletal muscle

  • Lee, Kwang-Pyo;Shin, Yeo Jin;Kwon, Ki-Sun
    • BMB Reports
    • /
    • 제48권11호
    • /
    • pp.595-596
    • /
    • 2015
  • Skeletal muscle exhibits a loss of muscle mass and function with age. Decreased regenerative potential of muscle stem/progenitor cells is a major underlying cause of sarcopenia. We analyzed microRNAs (miRNA) that are differentially expressed in young and old myoblasts, to identify novel intrinsic factors that play a degenerative role in aged skeletal muscle. miR-431, one of decreasing miRNAs in old myoblasts, improved the myogenic differentiation when overexpressed in old myoblast, but suppressed their myogenic capability in knockdowned young myoblasts. We found that miR-431 directly binds to 3` untranslated regions (UTR) of Smad4 mRNA, and decreases its expression. Given that SMAD4 is one of the downstream effectors of TGF-β, a well-known degenerative signaling pathway in myogenesis, the decreased miR-431 in old myoblast causes SMAD4 elevation, thus resulting in defective myogenesis. Exogenous expression of miR-431 greatly improved the muscle regeneration in the cardiotoxin-injured hindlimb muscle of old mice by reducing SMAD4 levels. Since the miR-431 seed sequence is conserved in human SMAD4 3'UTR, miR-431 regulates the myogenic capacity of human skeletal myoblasts in the same manner. Our results suggest that age-associated miR-431 is required for the maintenance of the myogenic capability in myoblasts, thus underscoring its potential as a therapeutic target to slow down muscle aging.

miR-372 Regulates Cell Cycle and Apoptosis of AGS Human Gastric Cancer Cell Line through Direct Regulation of LATS2

  • Cho, Wha Ja;Shin, Jeong Min;Kim, Jong Soo;Lee, Man Ryul;Hong, Ki Sung;Lee, Jun-Ho;Koo, Kyoung Hwa;Park, Jeong Woo;Kim, Kye-Seong
    • Molecules and Cells
    • /
    • 제28권6호
    • /
    • pp.521-527
    • /
    • 2009
  • Previously, we have reported tissue- and stage-specific expression of miR-372 in human embryonic stem cells and so far, not many reports speculate the function of this microRNA (miRNA). In this study, we screened various human cancer cell lines including gastric cancer cell lines and found first time that miR-372 is expressed only in AGS human gastric adenocarcinoma cell line. Inhibition of miR-372 using antisense miR-372 oligonucleotide (AS-miR-372) suppressed proliferation, arrested the cell cycle at G2/M phase, and increased apoptosis of AGS cells. Furthermore, AS-miR-372 treatment increased expression of LATS2, while over-expression of miR-372 decreased luciferase reporter activity driven by the 3' untranslated region (3' UTR) of LATS2 mRNA. Over-expression of LATS2 induced changes in AGS cells similar to those in AGS cells treated with AS-miR-372. Taken together, these findings demonstrate an oncogenic role for miR-372 in controlling cell growth, cell cycle, and apoptosis through down-regulation of a tumor suppressor gene, LATS2.