• Title/Summary/Keyword: RMSE(root mean square error)

Search Result 665, Processing Time 0.037 seconds

Analysis of Livestock Nonpoint Source Pollutant Load Ratio for Each Sub-watershed in Sancheong Watershed using HSPF Model (HSPF 모형을 이용한 산청 유역의 소유역별 축산비점오염부하량 비중 분석)

  • Kim, So Rae;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.39-50
    • /
    • 2020
  • The objective of this study was to assess the livestock nonpoint source pollutant impact on water quality in Namgang dam watershed using the HSPF (Hydrological Simulation Program-Fortran) model. The input data for the HSPF model was established using the landcover, digital elevation, and watershed and river maps. In order to apply the pollutant load to the HSPF model, the delivery load of the livestock nonpoint source in the Namgang dam watershed was calculated and used as a point pollutant input data for the HSPF model. The hydrologic and water quality parameters of HSPF model were calibrated and validated using the observed runoff data from 2007 to 2015 at Sancheong station. The R2 (Determination Coefficient), RMSE (Root Mean Square Error), NSE (Nash-Sutcliffe efficiency coefficient), and RMAE (Relative Mean Absolute Error) were used to evaluate the model performance. The simulation results for annual mean runoff showed that R2 ranged 0.79~0.81, RMSE 1.91~2.73 mm/day, NSE 0.7~0.71 and RMAE 0.37~0.49 mm/day for daily runoff. The simulation results for annual mean BOD for RMSE ranged 0.99~1.13 mg/L and RMAE 0.49~0.55 mg/L, annual mean TN for RMSE ranged 1.65~1.72 mg/L and RMAE 0.55 mg/L, and annual mean TP for RMSE ranged 0.043~0.055 mg/L and RMAE 0.552~0.570 mg/L. As a result of livestock nonpoint pollutant loading simulation for each sub-watersehd using the HSPF model, the BOD ranged 16.6~163 kg/day, TN ranged 27.5~337 kg/day, TP ranged 1.22~14.1 kg/day.

Estimation of the wind speed in Sivas province by using the artificial neural networks

  • Gurlek, Cahit;Sahin, Mustafa;Akkoyun, Serkan
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.161-167
    • /
    • 2021
  • In this study, the artificial neural network (ANN) method was used for estimating the monthly mean wind speed of Sivas, in the central part of Turkey. Eighteen years of wind speed data obtained from nine measurement stations during the period of 2000-2017 at 10 m height was used for ANN analysis. It was found that mean absolute percentage error (MAPE) ranged from 3.928 to 6.662, mean bias error (MBE) ranged from -0.089 to -0.003, while root mean square error (RMSE) ranged from 0.050 to 0.157 and R2 ranged from 0.86 to 0.966. ANN models provide a good approximation of the wind speed for all measurement stations, however, a tendency to underestimate is also obvious.

An Improved Frequency Modeling Corresponding to the Location of the Anjok of the Gayageum (가야금 안족의 위치에 따른 개선된 주파수 모델링)

  • Kwon, Sundeok;Cho, Sangjin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.146-151
    • /
    • 2014
  • This paper analyzes the previous Anjok model of the Gayageum and describes a method to improve the frequency modeling based on previous model. In the previous work, relation between the fundamental frequency and Anjok's location on the body is assumed as an exponential function and these frequencies are integrated by a first-order leaky integrator. Finally, a parameter of the formula to calculate the fundamental frequency is obtained by applying integrated frequencies to the linear regression. This model shows 2.5 Hz absolute deviation on average and has maximum error 7.75 Hz for the low fundamental frequencies. In order to overcome this problem, this paper proposes that the Anjok's locations are grouped according to the rate of error increase and linear regression is applied to each group. To find the optimal parameter, the RMSE(Root Mean Square Error) between measured and calculated fundamental frequencies is used. The proposed model shows substantial reduction in errors, especially maximum three times.

Disinfection Models to Predict Inactivation of Artemia sp. via Physicochemical Treatment Processes (물리·화학적 처리공정을 이용한 Artemia sp. 불활성화 예측을 위한 소독 모델)

  • Zheng, Chang;Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.421-432
    • /
    • 2017
  • In this study, we examined the suitability of ten disinfection models for predicting the inactivation of Artemia sp. via single or combined physical and chemical treatments. The effect of Hydraulic Retention Time (HRT) on the inactivation of Artemia sp. was examined experimentally. Disinfection models were fitted to the experimental data by using the GInaFiT plug-in for Microsoft Excel. The inactivation model were evaluated on the basis of RMSE (Root Mean Square Error), SSE (mean Sum Square Error) and $r^2$. An inactivation model with the lowest RMSE, SSE and $r^2$ close to 1 was considered the best. The Weibull+Tail model was found to be the most appropriate for predicting the inactivation of Artemia sp. via electrolytic treatment and electrolytic-ultrasonic combined treatment. The Log-linear+Tail model was the most appropriate for modeling inactivation via homogenization and combined electrolytic-homogenization treatment. The double Weibull disinfection model was the most suitable for the predicting inactivation via ultrasonic treatment.

A Mathematical Model for Color Changes in Red Pepper during Far Infrared Drying

  • Ning, XiaoFeng;Han, ChungSu;Li, He
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.327-334
    • /
    • 2012
  • Purpose: The color changes in red pepper during far infrared drying were studied in order to establish a color change model. Methods: The far infrared drying experiments of red pepper were conducted at two temperature levels of 60, $70^{\circ}C$ and two air velocity levels of 0.6 and 0.8 m/s. The results were compared with the hot-air drying method. The surface color changes parameters of red pepper were measured qualitatively based on L (lightness), a (redness), b (yellowness) and total color changes (${\Delta}E$). The goodness of fit of model was estimated using the coefficient of determination ($R^2$), the root mean square error (RMSE), the mean relative percent error (P) and the reduced chi-square (${\chi}^2$). Results: The results show that an increase in drying temperature and air velocity resulted in a decrease in drying time, the values of L (lightness) and a (redness) decreased with drying time during far infrared drying. The developed model showed higher $R^2$ values and lower RMSE, P and ${\chi}^2$ values. Conclusions: The model in this study could be beneficial to describe the color changes of red pepper by far infrared drying.

A study on automated soil moisture monitoring methods for the Korean peninsula based on Google Earth Engine (Google Earth Engine 기반의 한반도 토양수분 모니터링 자동화 기법 연구)

  • Jang, Wonjin;Chung, Jeehun;Lee, Yonggwan;Kim, Jinuk;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.615-626
    • /
    • 2024
  • To accurately and efficiently monitor soil moisture (SM) across South Korea, this study developed a SM estimation model that integrates the cloud computing platform Google Earth Engine (GEE) and Automated Machine Learning (AutoML). Various spatial information was utilized based on Terra MODIS (Moderate Resolution Imaging Spectroradiometer) and the global precipitation observation satellite GPM (Global Precipitation Measurement) to test optimal input data combinations. The results indicated that GPM-based accumulated dry-days, 5-day antecedent average precipitation, NDVI (Normalized Difference Vegetation Index), the sum of LST (Land Surface Temperature) acquired during nighttime and daytime, soil properties (sand and clay content, bulk density), terrain data (elevation and slope), and seasonal classification had high feature importance. After setting the objective function (Determination of coefficient, R2 ; Root Mean Square Error, RMSE; Mean Absolute Percent Error, MAPE) using AutoML for the combination of the aforementioned data, a comparative evaluation of machine learning techniques was conducted. The results revealed that tree-based models exhibited high performance, with Random Forest demonstrating the best performance (R2 : 0.72, RMSE: 2.70 vol%, MAPE: 0.14).

An Experimental Study on the Sediment Transport Characteristics Through Vertical Lift Gate (연직수문의 퇴적토 배출특성에 관한 실험적 연구)

  • Lee, Ji Haeng;Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.4
    • /
    • pp.276-284
    • /
    • 2018
  • In order to analyze sediment transport characteristics of knickpoint migration, sediment transport length, and sediment transport weight through the under-flow type vertical lift gate, the hydraulic model experiment and dimensional analysis were performed. The correlations between Froude number and sediment transport characteristics were schematized. The multiple regression formulae for sediment transport characteristics with non-dimensional parameters were suggested. The determination coefficients of multiple regression equations appeared high as 0.618 for knickpoint migration, 0.632 for sediment transport length, and 0.866 for sediment transport weight. In order to evaluate the applicability of the developed hydraulic characteristic equations, 95% prediction interval analysis was conducted on the measured and the calculated by multiple regression equations, and it was determined that NSE (Nash-Sutcliffe Efficiency), RMSE (root mean square), and MAPE (mean absolute percentage error) are appropriate, for the accuracy analysis related to the prediction on sediment transport characteristics of kickpoint migration, sediment transport length and weight.

Comparison of incoming solar radiation equations for evaporation estimation (증발량 산정을 위한 입사태양복사식 비교)

  • Rim, Chang-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.129-143
    • /
    • 2011
  • In this study, to select the incoming solar radiation equation which is most suitable for the estimation of Penman evaporation, 12 incoming solar radiation equations were selected. The Penman evaporation rates were estimated using 12 selected incoming solar radiation equations, and the estimated Penman evaporation rates were compared with measured pan evaporation rates. The monthly average daily meteorological data measured from 17 meteorological stations (춘천, 강능, 서울, 인천, 수원, 서산, 청주, 대전, 추풍령, 포항, 대구, 전주, 광주, 부산, 목포, 제주, 진주) were used for this study. To evaluate the reliability of estimated evaporation rates, mean absolute bias error(MABE), root mean square error(RMSE), mean percentage error(MPE) and Nash-Sutcliffe equation were applied. The study results indicate that to estimate pan evaporation using Penman evaporation equation, incoming solar radiation equation using meteorological data such as precipitation, minimum air temperature, sunshine duration, possible duration of sunshine, and extraterrestrial radiation are most suitable for 11 study stations out of 17 study stations.

Prediction of California bearing ratio (CBR) for coarse- and fine-grained soils using the GMDH-model

  • Mintae Kim;Seyma Ordu;Ozkan Arslan;Junyoung Ko
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.183-194
    • /
    • 2023
  • This study presents the prediction of the California bearing ratio (CBR) of coarse- and fine-grained soils using artificial intelligence technology. The group method of data handling (GMDH) algorithm, an artificial neural network-based model, was used in the prediction of the CBR values. In the design of the prediction models, various combinations of independent input variables for both coarse- and fine-grained soils have been used. The results obtained from the designed GMDH-type neural networks (GMDH-type NN) were compared with other regression models, such as linear, support vector, and multilayer perception regression methods. The performance of models was evaluated with a regression coefficient (R2), root-mean-square error (RMSE), and mean absolute error (MAE). The results showed that GMDH-type NN algorithm had higher performance than other regression methods in the prediction of CBR value for coarse- and fine-grained soils. The GMDH model had an R2 of 0.938, RMSE of 1.87, and MAE of 1.48 for the input variables {G, S, and MDD} in coarse-grained soils. For fine-grained soils, it had an R2 of 0.829, RMSE of 3.02, and MAE of 2.40, when using the input variables {LL, PI, MDD, and OMC}. The performance evaluations revealed that the GMDH-type NN models were effective in predicting CBR values of both coarse- and fine-grained soils.

Optimization of Soil Contamination Distribution Prediction Error using Geostatistical Technique and Interpretation of Contributory Factor Based on Machine Learning Algorithm (지구통계 기법을 이용한 토양오염 분포 예측 오차 최적화 및 머신러닝 알고리즘 기반의 영향인자 해석)

  • Hosang Han;Jangwon Suh;Yosoon Choi
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.331-341
    • /
    • 2023
  • When creating a soil contamination map using geostatistical techniques, there are various sources that can affect prediction errors. In this study, a grid-based soil contamination map was created from the sampling data of heavy metal concentrations in soil in abandoned mine areas using Ordinary Kriging. Five factors that were judged to affect the prediction error of the soil contamination map were selected, and the variation of the root mean squared error (RMSE) between the predicted value and the actual value was analyzed based on the Leave-one-out technique. Then, using a machine learning algorithm, derived the top three factors affecting the RMSE. As a result, it was analyzed that Variogram Model, Minimum Neighbors, and Anisotropy factors have the largest impact on RMSE in the Standard interpolation. For the variogram models, the Spherical model showed the lowest RMSE, while the Minimum Neighbors had the lowest value at 3 and then increased as the value increased. In the case of Anisotropy, it was found to be more appropriate not to consider anisotropy. In this study, through the combined use of geostatistics and machine learning, it was possible to create a highly reliable soil contamination map at the local scale, and to identify which factors have a significant impact when interpolating a small amount of soil heavy metal data.