With the rapid growth of internet traffic, accurate and reliable prediction of internet traffic has been a key issue in network management and planning. This paper proposes an autoregressive-generalized autoregressive conditional heteroscedasticity (AR-GARCH) error model for forecasting internet traffic and evaluates its performance by comparing it with seasonal autoregressive integrated moving average (ARIMA) models in terms of root mean square error (RMSE) criterion. The results indicated that the seasonal AR-GARCH models outperformed the seasonal ARIMA models in terms of forecasting accuracy with respect to the RMSE criterion.
Journal of the Korean Data and Information Science Society
/
제23권6호
/
pp.1093-1102
/
2012
본 연구에서는 다변량시계열모형인 VAR (vector autoregressive regression)모형에 의하여 금리 스프레드의 시계열예측을 수행하였다. 국내외 거시경제변수들 중에서 교차상관분석 및 그랜져인과 검정을 통하여 상호간에 설명력이 있는 변수들을 추출하여 VAR모형의 시계열변수로 사용하였다. 마지막 12개월의 예측치에 대한 MAPE (mean absolute percentage error)와 RMSE (root mean square error)에 근거하여 모형의 예측력을 단일변량 시계열모형인 AR (autoregressive regression) 모형과 비교하였다.
본 연구는 수력발전을 위한 저수지 관리에 있어 예측오차의 영향을 살펴보기 위해 예측오차를 Root Mean Square Error(RMSE)로 측정하였고, 이를 Generalized Maintenance Of Variance Extension (GMOVE)기법을 통하여 변화시켜보았다.변화된 예측오차의 RMSE는 천이확률을 통하여 Bayesian Stochastic Dynamic Programming (BSDP)에 고려되어졌으며, 이 BSDP 모형을 이용하여 월별 방류량을 결정하였고 그 유용성을 평가하였다. 제시된 연구방법은 미국의 Skagit 시스템에 적용되었고, 그 결과로 Skagit 시스템의 운영은 예측오차의 RMSE에 비선형이므로 반응하므로 이 시스템의 운영을 개선하기 위해서는 현재의 수문학적 예측기법을 개선해야함을 제시하였다.
본 연구에서는 발파 시 사람과 주변 환경에 영향을 끼치는 발파진동(peak particle velocity, PPV)을 예측하는 모델을 개발하였다. PPV를 예측하기 위해 kNN(k-nearest neighbors), CART(classification and regression tree), SVR(support vector regression), PSO(particle swarm optimization)-SVR 알고리즘을 이용한 4가지 머신러닝 모델을 개발하고 상호 비교하였다. 머신러닝 모델을 훈련하기 위해 경상남도 창원시에 있는 욕망산을 연구지역으로 선정하고 1048개의 발파 데이터를 획득하였다. 발파 데이터는 천공장, 저항선, 공간격, 최대지발장약량, 비장약량, 총공수, 에멀전비율, 이격거리, PPV로 구성되었다. 훈련된 모델들의 성능을 평가하기 위한 지표 값으로 MAE(mean absolute error), MSE(mean squared error), RMSE(root mean squared error)를 사용하였다. 평가결과 PSO-SVR 모델이 MAE, MSE, RMSE가 각각 0.0348, 0.0021, 0.0458으로 가장 우수한 예측 성능을 나타냈다. 마지막으로 개발된 머신러닝 모델을 이용하여 주변 환경에 영향을 끼치는 정도를 예측하는 방법을 제시하였다.
본 논문에서는 순차적 학습 방법에서의 동적 모멘트를 제안한다. 동적 모멘트에서의 가변적인 모멘트를 이용하여 수렴 속도와 학습 성능을 향상시키며 회귀율에서도 이를 확인할 수 있다 제안된 학습 방법은 기존의 정적모멘트와는 달리 수렴 정도에 따라 현재의 학습에 과거의 학습률을 달리 반영하는 방법이다. 기존의 정적 상수로 정의된 모멘트가 전체 학습에 동등하게 영향을 주는 반면 제안된 동적모멘트를 이용한 학습 방법은 학습 수행에 따라 동적으로 모멘트를 변경함으로써 수렴 속도와 학습 성능을 효과적으로 제어할 수 있다. 이전의 분류문제와 회귀문제의 분리확인과는 달리 본 논문에서는 제안된 동적모멘트의 성능과 회귀율을 동시에 확인한다. 본 논문에서 사용한 회귀방법은 RMS 오류율을 사용하였으며 제안된 학습방법인 동적모멘트를 SVM(Support Vector Machine)의 순차 학습방법인 KA(Kernel Adatron)과 KR(Kernel Relaxation)에 적용하여 RMS 오류율을 확인하였다. 공정한 학습 성능 평가를 위해 신경망 분류기표준평가데이터인 SONAR 데이터를 이용하였으며 실험 결과 동적모멘트를 이용한 학습 성능과 수렴 속도 및 RMS 오류율이 정적모멘트를 이용한 학습방법보다 향상되었음을 확인하였다.
Information of local solar radiation is essential for many field, including water resources management, crop yield estimation, crop growth model, solar energy systems and irrigation and drainage design. Unfortunately, solar radiation measurements are not easily available due to the cost and maintenance and calibration requirements of the measuring equipment and station. Therefore, it is important to elaborate methods to estimate the solar radiation based on readily available meteorological data. In this study, two empirical equations are employed to estimate daily solar radiation using Cheongju Regional Meteorological Office data. Two scenarios are considered: (a) sunshine duration data are available for a given location, or (b) only daily cloudiness index records exist. Simple linear regression with daily sunshine duration and cloudiness index as the dependent variable accounted for 91% and 80%, respectively of the variation of solar radiation(H) at 2011. Daily global solar radiation is highly correlated with sunshine duration. In order to indicate the performance of the models, the statistical test methods of the mean bias error(MBE), root mean square error(RMSE) and correlation coefficient(r) are used. Sunshine duration and cloudiness index can be easily and reliably measured and data are widely available.
Agricultural meteorological information is an important resource that affects farmers' income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricultural policies. The meteorological information obtained from automatic weather observation systems operated by rural development agencies contains missing values owing to temporary mechanical or communication deficiencies. It is known that missing values lead to reduction in the reliability and validity of the model. In this study, the hierarchical Bayesian spatio-temporal model suggests replacements for missing values because the meteorological information includes spatio-temporal correlation. The prior distribution is very important in the Bayesian approach. However, we found a problem where the spatial decay parameter was not converged through the trace plot. A suitable spatial decay parameter, estimated on the bias of root-mean-square error (RMSE), which was determined to be the difference between the predicted and observed values. The latitude, longitude, and altitude were considered as covariates. The estimated spatial decay parameters were 0.041 and 0.039, for the spatio-temporal model with latitude and longitude and for latitude, longitude, and altitude, respectively. The posterior distributions were stable after the spatial decay parameter was fixed. root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were calculated for model validation. Finally, the missing values were generated using the independent Gaussian process model.
도시가스 배관은 지중에 매설되어 있기 때문에 세부 관리가 어렵고 다양한 위험에 노출되어 있다. 본 연구에서는 도시가스 배관압력 실시간 데이터를 분석해 배관압력 이상을 예측하고 전문가의 의사결정을 돕는 모델을 제안한다. 국내 도시가스 공급업체들 중 하나인 중부도시가스사의 정압기에서 수집하는 실시간 배관압력 데이터와 시간변수, 외부환경변수를 통합해 분석 데이터로 사용한다. 아산시와 천안시에 위치하는 11개 정압기를 분석 대상으로 하며 분 단위 배관압력 예측모델을 구현한다. Random forest, support vector regression(SVR), long-short term memory(LSTM) 알고리즘을 사용해 회귀모델을 구현한 결과 LSTM 모델에서 우수한 성능을 보인다. 아산시 배관압력 예측모델의 경우 LSTM 모델에서 RMSE가 0.011, MAPE가 0.494이며, 천안시 배관압력 예측모델의 경우 LSTM 모델에서 평균제곱근오차(root mean square error, RMSE)가 0.015, 절대평균백분율오차(mean absolute percentage error, MAPE)가 0.668로 가장 낮은 오류율을 보인다.
본 논문에서는 송수신단 간 변조기법 및 채널 상태 값이 약속되지 않은 완벽한 블라인드 통신 상황에서 송신측의 변조방식을 알아내기 위해 성좌도 회전 및 확률밀도함수(probability density function : pdf)를 이용한 새로운 자율 변조 구분(Automatic modulation classification : AMC)기법과 경험적 신호 그룹화 알고리즘을 통해 채널 상태 값을 추정하는 방법을 제안한다. 평균제곱근 편차(Root mean square error : RMSE) 및 심볼 오류율(Symbol error rate : SER) 등의 모의실험을 통해 제안된 기법과 기존의 다른 기법간의 채널 상태와 변조 추정 능력을 비교 평가한다.
레이다 시스템에서 3차원 궤적 정보는 목표물 추적을 위해 필수적이다. 이때 3차원 레이다는 수신 신호를 통해 방위각, 고각 및 거리를 추정하여 3차원 궤적 정보를 얻게 된다. 수신 신호에 따라 추정된 각도들과 거리는 오차를 가지게 되며 이 오차의 정도에 따라 3차원 레이다 시스템의 성능에 미치는 영향에 대한 분석이 요구되어진다. 본 논문에서는 3차원 레이다 시스템의 각도 및 거리 오차에 따라 추정된 3차원 궤적 정보와 실제 궤적 정보에 대해 RMSE (Root Mean Square Error)를 통해 성능을 분석한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.