• Title/Summary/Keyword: RMS error

Search Result 393, Processing Time 0.024 seconds

Performance Improvement of Near Earth Space Survey (NESS) Wide-Field Telescope (NESS-2) Optics

  • Yu, Sung-Yeol;Yi, Hyun-Su;Lee, Jae-Hyeob;Yim, Hong-Suh;Choi, Young-Jun;Yang, Ho-Soon;Lee, Yun-Woo;Moon, Hong-Kyu;Byun, Yong-Ik;Han, Won-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.153-160
    • /
    • 2010
  • We modified the optical system of 500 mm wide-field telescope of which point spread function showed an irregularity. The telescope has been operated for Near Earth Space Survey (NESS) located at Siding Spring Observatory (SSO) in Australia, and the optical system was brought back to Korea in January 2008. After performing a numerical simulation with the tested value of surface figure error of the primary mirror using optical design program, we found that the surface figure error of the mirror should be fabricated less than root mean square (RMS) $\lambda$/10 in order to obtain a stellar full width at half maximum (FWHM) below $28\;{\mu}m$. However, we started to figure the mirror for the target value of RMS $\lambda$/20, because system surface figure error would be increased by the error induced by the optical axis adjustment, mirror cell installation, and others. The radius of curvature of the primary mirror was 1,946 mm after the correction. Its measured surface figure error was less than RMS $\lambda$/20 on the table of polishing machine, and RMS $\lambda$/15 after installation in the primary mirror cell. A test observation performed at Daeduk Observatory at Korea Astronomy and Space Science Institute by utilizing the exiting mount, and resulted in $39.8\;{\mu}m$ of stellar FWHM. It was larger than the value from numerical simulation, and showed wing-shaped stellar image. It turned out that the measured-curvature of the secondary mirror, 1,820 mm, was not the same as the designed one, 1,795.977 mm. We fabricated the secondary mirror to the designed value, and finally obtained a stellar FWHM of $27\;{\mu}m$ after re-installation of the optical system into SSO NESS Observatory in Australia.

A study on Angle Spectrum of Arrival using RMS Model Errors Effects (RMS 모델 오차 효과를 이용한 도래각 스펙트럼에 관한 연구)

  • Ga, Gwan-U;Ham, Sung-Min;Lee, Kwan-Hyeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.3
    • /
    • pp.148-151
    • /
    • 2013
  • A new direction of arrival estimation method using effects of model errors and sensitivity analysis is proposed. Since a desired signal is obtained after interference rejection through correction effects of model error, the effect of channel interference on the estimation is significantly reduced. Through simulation, we show that the proposed method offers significantly improved estimation resolution and accuracy relative to existing method.

Design and Implementation of the Wideband 5-bit Phase Shifter (광대역 5-bit 위상변위기의 설계 및 제작)

  • 전병휘;정영준;이광일;임인성;오승엽
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.613-616
    • /
    • 2003
  • This paper describes the design and implementation of wideband 360$^{\circ}$ phase shifter by using I/Q vector method. One of four quadrants was selected by a switching operation and the desired phase value was obtained by varying attenuation level of attenuator located in I/Q path. The minimum phase RMS error of 3.6$^{\circ}$ and the maximum phase RMS error of 25.2$^{\circ}$ were measured over 6~180Hz frequency range. Those characteristics are good enough for the requirement of ECM radar equipment. The phase values can be adjusted by control module.

  • PDF

Development of simulation program for TXV and capillary tube performance analysis (감온 팽창밸브 및 모세관 성능 시뮬레이션 프로그램 개발)

  • 박봉수;한창섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.170-180
    • /
    • 2000
  • The equation which is related to TXV performance was investigated. On the basis of this equation, the TXV simulation program was developed. Results of the developed TXV simulation program were proven by the experiment on the influence of pressure difference between TXV entrance and exit and equalizing pressure. Simulation results show very good agreement with experimental results, the RMS error between them was 1.83%. The capillary tube simulation program was made by the basic equation of fluid dynamics. Results of this program were proven by data which were experimented previously. The RMS error between simulation results and experimental results was 4.13% .

  • PDF

A Selection of an Optimal Mother Wavelet for Stator Fault Detection of AC Generator (교류 발전기 고정자 사고 검출을 위한 최적 마더 웨이브릿의 선정)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.377-382
    • /
    • 2008
  • For stator winding protection of AC generator, KCL(Kirchhoff's Current Law) is widely applied. Actually a CRDR(Current Ratio Differential Relay) based on DFT(Discrete Fourier Transform) has been used for protecting generator. It has been pointed out that defects can occur during the process of transforming a time domain signal into a frequency domain one which can lead to loss of time domain information. Wavelets techniques are proposed for the analysis of power system transients. This paper introduces an algorithm to choose a suitable Mother Wave1et for generator stator fault detection. For optimal selection, we analyzed db(Daubechies), sym(Symlets), and coif(Coiflects) of Mother Wavelet. And we compared with performance of the choice algorithm using detail coefficients energy and RMS(root mean square) error. It can be improved the reliability of the conventional DFT based CRDR. The feasibility and effectiveness of the proposed scheme is proved with simulation using collected data obtained from ATP (Alternative Transient Program) package.

A Design of Simple and Precision Direction Finder with a Combination of an Amplitude Measurement and Phase Measurement

  • Lim Joong-Soo
    • International Journal of Contents
    • /
    • v.1 no.2
    • /
    • pp.35-38
    • /
    • 2005
  • This paper describes a design of simple and precision direction finder that can be adapted to shipboard or mobile vehicles used for Electronic support measure, ELINT and radio signal monitoring systems. The direction finding technology has improved with monolithic integrated circuit, linear array antennas, and interferometer. Interferometer uses the phase-comparison principle and has a good direction finding accuracy but it has an ambiguity problem. We suggest a simple ambiguity solver using phase-comparison technology with amplitude-comparison principle. The direction finding device that has been designed by the suggested method has 0.7 degree RMS error in azimuth angle and 0.6 degree RMS error in elevation angle in 0.5 - 2.0 GHz.

  • PDF

Performance Analysis of Wide-Area Differential Positioning Based on Regional Navigation Satellite System

  • Kim, Donguk;So, Hyoungmin;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2021
  • The position accuracy of the stand-alone Regional Navigation Satellite System (RNSS) users is more than tens of meters because of various error sources in satellite navigation signals. This paper focuses on wide-area differential (WAD) positioning technique, which is already applied in Global Navigation Satellite System (GNSS), in order to improve the position accuracy of RNSS users. According to the simulation results in the very narrow ground network in regional area, the horizontal position error of stand-alone RNSS is about RMS 11.6 m, and that of RNSS with WAD technique, named the WAD-RNSS, is about RMS 2.5 m. The accuracy performance has improved by about 78%.

2-6 GHz Digital Phase Shifter Module (2-6 GHz 디지털 위상변위기 모듈)

  • Jeong, Myeong-Deuk;So, Jun-Ho;U, Byeong-Il;Im, Jung-Su;Lee, Sang-Won;Park, Dong-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.3
    • /
    • pp.158-164
    • /
    • 2002
  • 2-6 GHz digital phase shifter module has been designed and fabricated. For the broadband operation and performance, MMIC phase shifter chip for phase shifter module was designed and fabricated by using the reflection-type circuits with Lange coupler. The fabricated phase shifter module shows 6.1$^{\circ}$RMS phase error, 13.5 dB maximum insertion loss, and 8 dB and 10 dB input and output return losses, respectively. Computer controlled measurement systems are realized in order to get the measured data of 32 phase states. The RMS insertion phase error and the average insertion loss deviation among 8${\times}$8 modules for the phased-array system are less than ${\pm}$0.5$^{\circ}$and ${\pm}$0.5 dB, respectively. The size of fabricated phase shifter module is 45 ${\times}$ 22.5 ${\times}$60㎣.

A Study on Nonlinear GPA for Optimal Measurement Parameter Selection of Turboprop Engine (터보프롭 엔진의 최적 계측 변수 선정을 위한 비선형 GPA 기법에 관한 연구)

  • 공창덕;기자영
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.1
    • /
    • pp.69-75
    • /
    • 2001
  • Linear GPA(Gas Path Analysis) and non-linear GPA programs for performance diagnostics of a turboprop engine were developed, and a study for selection of optimal measurement variables was performed. Simultaneous faults in the compressor, the compressor turbine and the power turbine, which occur damage of the engine, were assumed. The non-linear GPA analysis was carried out with an iterative method, where the performance degradation rate of independent parameters was divided into same intervals. It was compared with the result by the Newton-Raphson method for observing the effect of an iterative method. According to the analysis result, it was found that performance of non-linear GPA can be influenced on the type of the iterative method. For showing effects of the number of measurement variables both the linear and non-linear GPAs were analyzed with 10, 8 and 6 measurement sets, respectively. RMS error between them were compared each other. It was realized that the more measurement parameters are used, and the more accurate result may be obtained. However much better result can be obtained with measurement parameters selected properly Moreover, RMS error by using non-linear GPA was less than that by using linear GPA.

  • PDF

Transceiver IC for CMOS 65nm 1-channel Beamformer of X/Ku band (X/Ku 대역 CMOS 65nm 단일 채널 빔포머 송수신기 IC )

  • Jaejin Kim;Yunghun Kim;Sanghun Lee;Byeong-Cheol Park;Seongjin Mun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.43-47
    • /
    • 2024
  • This paper introduces a phased-array single-channel transceiver beamformer IC built using 65nm CMOS technology, covering the 8-16 GHz range and targeting the X and Ku bands for radar and satellite communications. Each signal path in the IC features a low noise amplifier (LNA), power amplifier (PA), phase shifter (PS), and variable gain amplifier (VGA), which allow for phase and gain adjustments essential for beam steering and tapering control in typical beamforming systems. Test results show that the phase-compensated VGA offers a gain range of 15 dB with 0.25 dB increments and an RMS gain error of 0.27 dB. The active vector modulator phase shifter delivers a 360° phase range with 2.8125° steps and an RMS phase error of 3.5°.