• 제목/요약/키워드: RISE

검색결과 10,881건 처리시간 0.034초

고강도강재의 효율적 사용을 위한 초고층건물의 최적설계기법 (Structural Optimization of High-rise Buildings using High-strength Steels)

  • 서지현;권봉근;김상범;박효선
    • 한국전산구조공학회논문집
    • /
    • 제22권3호
    • /
    • pp.277-287
    • /
    • 2009
  • 최근 국내에서 400~600MPa급의 구조용 고강도강재가 생산되고 있으며, 큰 하중을 부담해야 하는 초고층건물에는 고강도강재의 사용이 효과적일 것으로 예상되나, 고강도강재의 적절한 사용법 및 적용사례 부족으로 인해 고강도강재는 일부 건축물에서 제한적으로 사용되고 있다. 그럼으로 본 연구에서는 고강도강재를 초고층건물에 이용할 수 있는 방법으로 최적화기법을 이용한 초고층건물 구조비용 최적설계기법을 개발하였다. 개발된 최적설계법은 강재의 강종별 재료 가격을 고려하며 강재의 강도와 크기를 결정함으로서 구조비용을 최소화 시킬 수 있다. 제안된 구조비용 최적설계법을 6개의 실제 초고층건물 구조설계에 적용하였으며, 경험에 의존한 구조 설계를 병행하여 개발된 최적설계법의 효율성과 적용성을 평가하였다. 개발된 초고층건물 구조비용 최적화기법은 경험에 의존한 설계에 비해 7~21%정도의 구조비용을 절감할 수 있었다. 또한, 제안된 최적설계법의 적용결과로서 얻어진 강재의 강도분포와 강종별 재료비용의 분석을 통해서 고강도강재를 초고층건물에 효과적으로 적용하기 위한 간략한 가이드라인을 제시하였다.

고층아파트 지붕형태 분화(分化)에 관한 조사연구 - 대구광역시 고층아파트를 중심으로 - (A Research on the Differentiation of Roof Styles about High-rise Apartment Complexes - Focused on High-rise Apartment Complexes in Daegu City -)

  • 박찬돈
    • 한국주거학회논문집
    • /
    • 제20권3호
    • /
    • pp.19-26
    • /
    • 2009
  • The purpose of this study is to classify roof styles about high-rise apartment complexes in these days. Specially, it is focused on those in Daegu city. It has analyzed for 75 apartment complexes in Daegu city. Those complexes are all over 300 houses each and were built from 2004 to 2007. Generally, roof styles about high-rise apartment complexes are classed as a flat roof style and a slope-sided roof style. Types of the flat roof style were divided a flat roof style and a eyebrows roof style. And, types of the slope-sided roof style were divided a single slope-sided roof style, a gable roof style, and a hipped roof style. The curved roof style didn't show up at these cases. According to this study, the slope-sided roof style including the gable roof style was revealed the most common roof style about high-rise apartment complexes in Daegu city from 2004 to 2007. Among 76 cases of roof styles, the number of the gable roof style is 52, and the number of flat roof style is 18. Each roof style was changed for more decorative shape. Specially, in case of the flat roof style, 17 cases for 18 cases are built as a decorative flat roof style. and, 15 for 52 gable roof style cases are built as a decorative style, too. According this case study, we are able to know that the sort of roof style was advanced variously and decoratively, and the shape of roof style was combined more than 2 decorative factors. The roof style of high-rise apartment complex in future will be more various and decorative than this time and will be develop compositively.

1기 신도시 고층고밀 아파트단지의 재생을 위한 개발현황 분석에 관한 연구 - 분당신도시를 중심으로 - (A study on Actual Conditions Analysis for Regeneration of High-rise and High-density Apartment in the 1st period New Town)

  • 조성희;이태경;오덕성
    • KIEAE Journal
    • /
    • 제9권2호
    • /
    • pp.17-26
    • /
    • 2009
  • High-rise and high-density apartment complexes have been built and supplied on a large scale in the 1st period New Town of metropolitan areas since the late 1980s. Recently it has become necessary to improve those apartment complexes which have blight problems for aging more than about 20 years accompanying simultaneity and a large scale. The purpose of this study is to analyze actual conditions of high-rise and high-density apartments in a view of sustainable regeneration. The contents and methods of this study are as follows. First, the concept of high-rise and high-density in domestic apartment developments were identified through review of literature and the law. Second, development conditions of Bundang new town and 1st period new town were studied. Third, the evelopment conditions of high-rise and high-density apartments in cases of 6 apartment complexes were analyzed from points of view of sustainable development by literature review and a field study. The results of this study are as follows. First, high-density range in domestic apartments can be conceptualized as 600 persons/ha. High-rise range in domestic apartments can be onceptualized as more than 11 stories under 30 stories. Second, characteristics and subjects based on actual conditions analysis could suggest on physio-environmental aspect and socio-economic aspect. Major characteristics and subjects of the physio-environmental aspect were 1.satisfaction of convenient facilities and public transportation service, 2.shortage of parking space, 3.uniform & blight of community facilities, 4.uniformed building layout, and 5.uniform pattern of unit plan and low flexibility by the bearing wall structure. And those of the socio-economical aspect were 1.satisfaction of current community, 2.increase and diversity of needs of the elderly by socio-demography change, 3.improvement of size and method of apartment complex development and 4.raising of economic-sufficiency.

열손실량 보정을 통한 콘크리트 단열온도상승량 예측 장치 (Equipment for Measuring the Adiabatic Temperature Rise of Concrete by Compensating Heat Loss)

  • 진은웅;김진용;김진근
    • 콘크리트학회논문집
    • /
    • 제24권5호
    • /
    • pp.535-542
    • /
    • 2012
  • 매스 콘크리트에서 발생하는 수화열을 예측하기 위한 단열온도상승시험은 시험 비용이 고가이고 시공간상 제약으로 인해 한계가 있는 실정이다. 이에 신속하고 경제적이며 간편한 간이 수화열 측정 장치의 개발이 필요한 실정이다. 이 연구에서는 간이 수화열 측정 장치를 완성하기 전 단열 성능이 뛰어난 보온병에 콘크리트를 타설하고 열손실량을 보정하여, 간이 수화열 측정 장치의 타당성을 입증하고자 하였다. 열손실량을 정확히 예측하기 위해서는 측정 장치의 정확한 열손실계수를 추정하는 것이 필수적인데, 열손실계수는 단열 장치 내부의 수온 변화를 이용하여 추정하였다. 시험 결과 장치 고유의 열손실계수는 외부 온도와 습도, 내부 온도 변화에 크게 변하지 않는 것으로 드러났다. 실제 단열온도상승시험과 열손실량이 보정된 보온병의 단열온도상승량과의 검증 시험을 통해 이 연구의 객관성과 타당성을 입증할 수 있었다.

Seismic Risk Assessment of Existing Low-rise Reinforced Concrete Buildings in Korea

  • LEE, Kang Seok;Jung, Ju-Seong;Choi, Yun-Chul
    • Architectural research
    • /
    • 제20권1호
    • /
    • pp.17-25
    • /
    • 2018
  • Countermeasures against earthquake disasters such as the seismic capacity evaluation and/or retrofit schemes of buildings, especially existing low-rise reinforced concrete buildings, have not been fully performed since Korea had not experienced many destructive earthquakes in the past. However, due to more than 1200 earthquakes with low or moderate intensity in the off-coastal and inland of Korea during the past 20 years, and due to the recent moderate earthquakes in Korea, such as the 2016 Gyeongju Earthquake with M=5.8 and the 2017 Pohang Earthquake with M=5.4, the importance of the future earthquake preparedness measures is highly recognized in Korea. The main objective of this study is to provide the basic information regarding seismic capacities of existing low-rise reinforced concrete buildings in Korea. In this paper, seismic capacities of 14 existing low-rise reinforced concrete public buildings in Korea are evaluated based on the Japanese Standard for Evaluation of Seismic Capacity of Existing Reinforced Concrete Buildings. Seismic capacities between existing buildings in Korea and those in Japan is compared, and the relationship of seismic vulnerability of Korean buildings and Japanese buildings damaged due to severe earthquakes are also discussed. Results indicated that Korean existing low-rise reinforced concrete buildings have a narrow distribution of seismic capacities and they are relatively lower than Japanese buildings, and are also expected to have severe damage under the earthquake intensity level experienced in Japan. It should be noted from the research results that the high ductility in Korean existing low-rise buildings obtained from the Japanese Standard may be overestimated, because most buildings investigated herein have the hoop spacing wider than 30 cm. In the future, the modification of strength and ductility indices in the Japanese Standard to propose the seismic capacity evaluation method of Korean buildings is most needed.

A Kalman filter based algorithm for wind load estimation on high-rise buildings

  • Zhi, Lun-hai;Yu, Pan;Tu, Jian-wei;Chen, Bo;Li, Yong-gui
    • Structural Engineering and Mechanics
    • /
    • 제64권4호
    • /
    • pp.449-459
    • /
    • 2017
  • High-rise buildings are generally sensitive to strong winds. The evaluation of wind loads for the structural design, structural health monitoring (SHM), and vibration control of high-rise buildings is of primary importance. Nevertheless, it is difficult or even infeasible to measure the wind loads on an existing building directly. In this regard, a new inverse method for evaluating wind loads on high-rise buildings is developed in this study based on a discrete-time Kalman filter. The unknown structural responses are identified in conjunction with the wind loads on the basis of limited structural response measurements. The algorithm is applicable for estimating wind loads using different types of wind-induced response. The performance of the method is comprehensively investigated based on wind tunnel testing results of two high-rise buildings with typical external shapes. The stability of the proposed algorithm is evaluated. Furthermore, the effects of crucial factors such as cross-section shapes of building, the wind-induced response type, errors of structural modal parameters, covariance matrix of noise, noise levels in the response measurements and number of vibration modes on the identification accuracy are examined through a detailed parametric study. The research outputs of the proposed study will provide valuable information to enhance our understanding of the effects of wind on high-rise buildings and improve codes of practice.

Novel Water-Soluble Polyfluorenes as an Interfacial layer leading to Cathodes-Independent High Performance of Organic Solar Cells

  • 오승환;심희상;박동원;정연길;이재광;문승현;김동유
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.394-394
    • /
    • 2009
  • Water solubility of conjugated polymers may offer many applications. Potential applications of water-soluble conjugated polymers include the polymer light-emitting diode and new materials for nano and micro hollow-capsules, and bio- or chemo-sensors. We synthesized neutral polyfluorenes containing bromo-alkyl groups by the palladium catalyzed Suzuki coupling reaction. Bromo-alkyl side groups in neutral polyfluorenes were quaternized by tri-methyl amine solution. The electrochemical and optical properties of water-soluble conjugated polymers are discussed. This novel synthesized water-soluble conjugated polymers were used as a interfacial dipole layer between active layer and metal cathode in polymer solar cell for enhancement of open-circuit voltage (Voc), which is one of the most critical factors in determining device characteristics. We also investigated the device performance of polymer solar cell with different metal cathode such as Al, Ag, Au and Cu. In polymer solar cell, novel cationic water-soluble conjugated polymers were inserted between active layer and high-work function cathode (Al, Ag, Au and Cu).

  • PDF

Temperature changes under demineralized dentin during polymerization of three resin-based restorative materials using QTH and LED units

  • Mousavinasab, Sayed-Mostafa;Khoroushi, Maryam;Moharreri, Mohammadreza;Atai, Mohammad
    • Restorative Dentistry and Endodontics
    • /
    • 제39권3호
    • /
    • pp.155-163
    • /
    • 2014
  • Objectives: Light-curing of resin-based materials (RBMs) increases the pulp chamber temperature, with detrimental effects on the vital pulp. This in vitro study compared the temperature rise under demineralized human tooth dentin during light-curing and the degrees of conversion (DCs) of three different RBMs using quartz tungsten halogen (QTH) and light-emitting diode (LED) units (LCUs). Materials and Methods: Demineralized and non-demineralized dentin disks were prepared from 120 extracted human mandibular molars. The temperature rise under the dentin disks (n = 12) during the light-curing of three RBMs, i.e. an Ormocer-based composite resin (Ceram. X, Dentsply DeTrey), a low-shrinkage silorane-based composite (Filtek P90, 3M ESPE), and a giomer (Beautifil II, Shofu GmbH), was measured with a K-type thermocouple wire. The DCs of the materials were investigated using Fourier transform infrared spectroscopy. Results: The temperature rise under the demineralized dentin disks was higher than that under the non-demineralized dentin disks during the polymerization of all restorative materials (p < 0.05). Filtek P90 induced higher temperature rise during polymerization than Ceram.X and Beautifil II under demineralized dentin (p < 0.05). The temperature rise under demineralized dentin during Filtek P90 polymerization exceeded the threshold value ($5.5^{\circ}C$), with no significant differences between the DCs of the test materials (p > 0.05). Conclusions: Although there were no significant differences in the DCs, the temperature rise under demineralized dentin disks for the silorane-based composite was higher than that for dimethacrylate-based restorative materials, particularly with QTH LCU.

Earthquake Response of Mid-rise to High-rise Buildings with Friction Dampers

  • Kaur, Naveet;Matsagar, V.A.;Nagpal, A.K.
    • 국제초고층학회논문집
    • /
    • 제1권4호
    • /
    • pp.311-332
    • /
    • 2012
  • Earthquake response of mid-rise to high-rise buildings provided with friction dampers is investigated. The steel buildings are modelled as shear-type structures and the investigation involved modelling of the structures of varying heights ranging from five storeys to twenty storeys, in steps of five storeys, subjected to real earthquake ground motions. Three basic types of structures considered in the study are: moment resisting frame (MRF), braced frame (BF), and friction damper frame (FDF). Mathematical modelling of the friction dampers involved simulation of the two distinct phases namely, the stick phase and the slip phase. Dynamic time history analyses are carried out to study the variation of the top floor acceleration, top floor displacement, storey shear, and base-shear. Further, energy plots are obtained to investigate the energy dissipation by the friction dampers. It is seen that substantial earthquake response reduction is achieved with the provision of the friction dampers in the mid-rise and high-rise buildings. The provision of the friction dampers always reduces the base-shear. It is also seen from the fast Fourier transform (FFT) of the top floor acceleration that there is substantial reduction in the peak response; however, the higher frequency content in the response has increased. For the structures considered, the top floor displacements are lesser in the FDF than in the MRF; however, the top floor displacements are marginally larger in the FDF than in the BF.

초고층건물의 사각조망에서 촬영된 지붕표면 열화상의 신뢰도 평가 (Evaluating Reliability of Rooftop Thermal Infrared Image Acquired at Oblique Vantage Point of Super High-rise Building)

  • 류택형;엄정섭
    • 한국태양에너지학회 논문집
    • /
    • 제33권5호
    • /
    • pp.51-59
    • /
    • 2013
  • It is usual to evaluate the performance of the cool roof by measuring in-site rooftop temperature using thermal infra-red camera. The principal advantage of rooftop thermal infrared image acquired in oblique vantage point of super high-rise building as a remote sensor is to provide, in a cost-effective manner, area-wide information required for a scattered rooftop target with different colors, utilizing wide view angle and multi-temporal data coverage. This research idea was formulated by incorporating the concept of traditional remote sensing into rooftop temperature monitoring. Correlations between infrared image of super high-rise building and in-situ data were investigated to compare rooftop surface temperature for a total of four different rooftop locations. The results of the correlations analyses indicate that the rooftop surface temperature by the infrared images of super high-rise building alone could be explained yielding $R^2$ values of 0.951. The visible permanent record of the oblique thermal infra-red image was quite useful in better understanding the nature and extent of rooftop color that occurs in sampling points. This thermal infrared image acquired in oblique vantage point of super high-rise made it possible to identify area wide patterns of rooftop temperature change subject to many different colors, which cannot be acquired by traditional in-site field sampling. The infrared image of super high-rise building breaks down the usual concept of field sampling established as a conventional cool roof performance evaluation technique.