• Title/Summary/Keyword: RHSFCB

Search Result 2, Processing Time 0.014 seconds

A Study on the Shear Behavior of Reinforced Hooked Steel Fibrous Concrete Beam (훅트강섬유보강철근콘크리트보의 전단거동에 관한 연구)

  • 심종성;이차돈;김규선;오홍섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.224-228
    • /
    • 1995
  • Addition of hooked steel fibers into the cementitious materials enhanced shear resistance and consequently improves structural behavior and shear strength of reinforced hooked steel fibrous concrete beam(RHSFCB) under the shear forces. Experimental observations were made on the main parameters effecting structural behavior of RHSFCB in this study. The volume fractions of fibers, shear span to depth ratios, and spacings of stirrups were taken into account as the main parameters. Some equations reported in the literatures, regarding the predictions of the shear strength of RHSFCB have been evaluated statistically based on the total number of 95 test results on RHSFCB failed in shear on shear-flexural mode.

  • PDF

Experimental Study on the Shear Behavior of Reinforced Hooked-Steel-Fiver Concrete Beams (훅트강섬유보강 철근콘크리트보의 전단거동에 대한 실험적 연구)

  • 심종성;이차돈;김규선;오홍섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.179-188
    • /
    • 1995
  • SFRC overcomes brittleness of concrete and has increases strength due to the action of confmement, crack arrestmg mechan~sm and pull out resistances of steel f~bers ~ n s ~ d e the concrete. These lead also to the increased strength and ductility under the shear stress. It has been reported that the secondary remforcement effect of steel fibers IS more pronounced In shear than flexure. Addition of hooked stee!, fibers into the cementitious materials enhanced shear resistance and consequently improves structural behavior and shear strength of Reinforced Hooked-Steel-Fiber Concrete Ream(RHSFCI3) under the shear forces. Experimental observations were made on the main parameters effecting structural behavior of RHSFCB in this study. The volume fractions of fibers, shear span to depth ratios, and spaclngs of stlrrups were taken into account as the mam parameters. Some eyuatlons reported in the literatures, regardmg the predict~ons of the shear strength of RHSFCB have been evaluated stdtlst~cdlly based on the tot a1 number of 95 test results on RHSFCB faded In shear on shear flexu~al mode.