• 제목/요약/키워드: RHS-column

검색결과 16건 처리시간 0.018초

Numerical analysis of the mechanical behavior of welded I beam-to-RHS column connections

  • Rosa, Rosicley J.R.;Neto, Juliano G.R.
    • Coupled systems mechanics
    • /
    • 제8권2호
    • /
    • pp.185-197
    • /
    • 2019
  • Considering the increasing use of tubular profiles in civil construction, this paper highlights the study on the behavior of welded connections between square hollow section column and I-beam, with emphasis on the assessment of the joint stiffness. Firstly, a theoretical analysis of the welded joints has been done focusing on prescriptions of the technical literature for the types of geometries mentioned. Then, a numerical analysis of the proposed joints were performed by the finite element method (FEM) with the software ANSYS 16.0. In this study, two models were evaluated for different parameters, such as the thickness of the cross section of the column and the sizes of cross section of the beams. The first model describes a connection in which one beam is connected to the column in a unique bending plane, while the second model describes a connection of two beams to the column in two bending planes. From the numerical results, the bending moment-rotation ($M-{\varphi}$) curve was plotted in order to determine the resistant bending moment and classify each connection according to its rotational capacity. Furthermore, an equation was established with the aim of estimating the rotational stiffness of welded I beam-to-RHS column connections, which can be used during the structure design. The results show that most of the connections are semi-rigid, highlighting the importance of considering the stiffness of the connections in the structure design.

Hysteretic Behavior of RHS Columns Under Random Cyclic Loading Considering Local Buckling

  • Yamada, Satoshi;Ishida, Takanori;Jiao, Yu
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1761-1771
    • /
    • 2018
  • In this paper, a hysteretic model of rectangular hollow section (RHS) columns that includes the deteriorating range caused by local buckling is proposed. The proposed model consists of the skeleton curve, the Bauschinger part that appears before reaching the maximum strength, the strength increasing part of the deteriorating range, and the unloading part. Of these, the skeleton curve, including the deterioration range caused by local buckling, which is considered to be equivalent to the load-deformation relationship under monotonic loading, is obtained through an analytical method. Bi-linear hysteretic models based on experimental results are applied to the Bauschinger part and the strength increasing part. The elastic stiffness is applied to the unloading part. The proposed model is verified by comparing with experimental results of RHS columns under monotonic and cyclic loading.

2-Seam 냉간성형 각형 CFT 기둥-보 내다이아프램 접합부의 구조성능에 관한 연구 (Study on Structural Performance of Two Seam Cold-Formed Square CFT Column to Beam Connections with Internal Diaphragm)

  • 오헌근;김선희;최영환;최성모
    • 복합신소재구조학회 논문집
    • /
    • 제3권4호
    • /
    • pp.27-37
    • /
    • 2012
  • The construction of a moment connection for a rectangular hollow section (RHS) column and a H-shaped beam is difficult because the RHS is a closed section. When a inner diaphragm is used for such a connection, in general, it is installed after cutting the HSS columns, which results in increased construction work. This paper suggests a new fabrication method to overcome such problems: An inner diaphragm is welded to inside a C-shaped section first, and then a column is fabricated by welding two C-shaped sections. This fabrication method is superior to a classic method in terms of constructibility. An experimental and a numerical study using Ansys 9.0 were performed in order to compare the strength of connections with respect to the presence of concrete, the corner shape of diaphragm, and the axis of loading. The experimental results including initial stiffness and ultimate loads are reported and the analytical results including load transfer mechanism, degree of stress concentration, and strain distribution are also reported.

Behaviour of cold-formed steel concrete infilled RHS connections and frames

  • Angeline Prabhavathy, R.;Samuel Knight, G.M.
    • Steel and Composite Structures
    • /
    • 제6권1호
    • /
    • pp.71-85
    • /
    • 2006
  • This paper presents the results of a series of tests carried out on cold-formed steel rectangular hollow and concrete infilled beam to column connections and frames. A stub column was chosen such that overall buckling does not influence the connection behaviour. The beam chosen was a short-span cantilever with a concentrated load applied at the free end. The beam was connected to the columns along the strong and weak axes of columns and these connections were tested to failure. Twelve experiments were conducted on cold-formed steel direct welded tubular beam to column connections and twelve experiments on connections with concrete infilled column subjected to monotonic loading. In all the experiments conducted, the stiffness of the connection, the ductility characteristics and the moment rotation behaviour were studied. The dominant mode of failure in hollow section connections was chord face yielding and not weld failure. Provision of concrete infill increases the stiffness and the ultimate moment carrying capacity substantially, irrespective of the axis of loading of the column. Weld failure and bearing failure due to transverse compression occurred in connections with concrete infilled columns. Six single-bay two storied frames both with and without concrete infill, and columns loaded along the major and minor axes were tested to failure. Concentrated load was applied at the midspan of first floor beam. The change in behaviour of the frame due to provision of infill in the column and in the entire frame was compared with hollow frames. Failure of the weld at the junction of the beam occurred for frames with infilled columns. Design expressions are suggested for the yielding of the column face in hollow sections and bearing failure in infilled columns which closely predicted the experimental failure loads.

각형 강관의 축방향 압축강도에 관한 연구 (Axial Compressive Strength of Rectangular Hollow Section Members)

  • 조재병;임정순;한충성
    • 한국강구조학회 논문집
    • /
    • 제10권2호통권35호
    • /
    • pp.153-160
    • /
    • 1998
  • 각형 강관(${\boxe}-75{\times}75{\times}3.2,\;{\boxe}-100{\times}100{\times}4.2,\;{\boxe}-125{\times}125{\times}6.0$) 기둥의 단면 치수와 초기 변형을 측정하였다. 인장시험, 단주 압축강도 실험, 그리고 세장비 $46{\sim}84$ 사이의 기둥에 대한 압축강도 실험을 수행하였다. 유한요소법에 의한 기둥의 압축 강도를 산출하였다. 단면의 공칭 치수에 대한 측정값의 오차는 무시할 정도이며, 초기변형은 각 단면별로 세장비 100에 해당하는 기둥길이에 대해 초과 확률 2.5% 값이 각각 1/490, 1/1121, 1/1395로 나타났다. 인장시험 결과 강재의 항복강도는 최소 규정 강도보다 30% 이상 높다. 기둥 실험 결과 얻은 각형 강관 기둥의 압축강도는 단주 압축강도를 강재의 항복강도로 간주하고 비교하면 유한요소 해석 결과나 AISC, Eurocode의 강도 곡선과 거의 같거나 약간 높은 값이나, 강재의 최소 규정강도를 기준으로 비교하면 실험 결과가 훨씬 높은 강도를 보이는 것으로 나타났다.

  • PDF

Effect of element interaction and material nonlinearity on the ultimate capacity of stainless steel cross-sections

  • Theofanous, M.;Gardner, L.
    • Steel and Composite Structures
    • /
    • 제12권1호
    • /
    • pp.73-92
    • /
    • 2012
  • The effect of element interaction and material nonlinearity on the ultimate capacity of stainless steel plated cross-sections is investigated in this paper. The focus of the research lies in cross-sections failing by local buckling; member instabilities, distortional buckling and interactions thereof with local buckling are not considered. The cross-sections investigated include rectangular hollow sections (RHS), I sections and parallel flange channels (PFC). Based on previous finite element investigations of structural stainless steel stub columns, parametric studies were conducted and the ultimate capacity of the aforementioned cross-sections with a range of element slendernesses and aspect ratios has been obtained. Various design methods, including the effective width approach, the direct strength method (DSM), the continuous strength method (CSM) and a design method based on regression analysis, which accounts for element interaction, were assessed on the basis of the numerical results, and the relative merits and weaknesses of each design approach have been highlighted. Element interaction has been shown to be significant for slender cross-sections, whilst the behaviour of stocky cross-sections is more strongly influenced by the material strain-hardening characteristics. A modification to the continuous strength method has been proposed to allow for the effect of element interaction, which leads to more reliable ultimate capacity predictions. Comparisons with available test data have also been made to demonstrate the enhanced accuracy of the proposed method and its suitability for the treatment of local buckling in stainless steel cross-sections.