• Title/Summary/Keyword: RGB-LED

Search Result 129, Processing Time 0.036 seconds

Determination of Germination Quality of Cucumber (Cucumis Sativus) Seed by LED-Induced Hyperspectral Reflectance Imaging

  • Mo, Changyeun;Lim, Jongguk;Lee, Kangjin;Kang, Sukwon;Kim, Moon S.;Kim, Giyoung;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.318-326
    • /
    • 2013
  • Purpose: We developed a viability evaluation method for cucumber (Cucumis sativus) seed using hyperspectral reflectance imaging. Methods: Reflectance spectra of cucumber seeds in the 400 to 1000 nm range were collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares-discriminant analysis (PLS-DA) was developed to predict viable and non-viable seeds. Various ranges of spectra induced by four types of LEDs (Blue, Green, Red, and RGB) were investigated to develop the classification models. Results: PLS-DA models for spectra in the 600 to 700 nm range showed 98.5% discrimination accuracy for both viable and non-viable seeds. Using images based on the PLS-DA model, the discrimination accuracy for viable and non-viable seeds was 100% and 99%, respectively Conclusions: Hyperspectral reflectance images made using LED light can be used to select high quality cucumber seeds.

A study on development of RGB color variable optical ID module considering smart factory environment (스마트 팩토리 환경을 고려한 RGB 컬러 가변형 광 ID 모듈개발 연구)

  • Lee, Min-Ho;Timur, Khudaybergenov;Lee, Beom-Hee;Cho, Ju-Phil;Cha, Jae-Sang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.623-629
    • /
    • 2018
  • Smart Factory is a concept of automatic production system of machines by the fusion of ICT and manufacturing. As a base technology for realizing such a smart factory, there is an increasing interest in a low-power environmentally friendly LED lighting system, and researches on so-called optical ID related application technologies such as communication using a LED and position recognition are actively underway. In this paper, We have proposed a system that can reliably identify logistics location and additional information without being affected by electromagnetic interference such as high voltage, high current, and generator in the plant. Through the basic experiment, we confirmed the applicability of the color ID recognition rate from 98.8% to 93.8% according to the eight color variations in the short distance.

Establishing Optimal Conditions for LED-Based Speed Breeding System in Soybean [Glycine max (L.) Merr.] (LED 기반 콩[Glycine max (L.) Merr.] 세대단축 시스템 구축을 위한 조건 설정)

  • Gyu Tae Park;Ji-Hyun Bae;Ju Seok Lee;Soo-Kwon Park;Dool-Yi Kim;Jung-Kyung Moon;Mi-Suk Seo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.304-312
    • /
    • 2023
  • Plant breeding is a time-consuming process, mainly due to the limited annual generational advancement. A speed breeding system, using LED light sources, has been applied to accelerate generational progression in various crops. However, detailed protocols applicable to soybeans are still insufficient. In this study, we report the optimized protocols for a speed breeding system comprising 12 soybean varieties with various maturity ecotypes. We investigated the effects of two light qualities (RGB ratio), three levels of light intensity (PPFD), and two soil conditions on the flowering time and development of soybeans. Our results showed that an increase in the red wavelength of the light spectrum led to a delay in flowering time. Furthermore, as light intensity increased, flowering time, average internode length, and plant height decreased, while the number of nodes, branches, and pods increased. When compared to agronomic soil, horticultural soil resulted in an increase of more than 50% in the number of nodes, branches, and pods. Consequently, the optimal conditions were determined as follows: a 10-hour short-day photoperiod, an equal RGB ratio (1:1:1), light intensity exceeding 1,300 PPFD, and the use of horticultural soil. Under these conditions, the average flowering time was found to be 27.3±2.48 days, with an average seed yield of 7.9±2.67. Thus, the speed breeding systems reduced the flowering time by more than 40 days, compared to the average flowering time of Korean soybean resources (approximately 70 days). By using a controlled growth chamber that is unaffected by external environmental conditions, up to 6 generations can be achieved per year. The use of LED illumination and streamlined facilities further contributes to cost savings. This study highlights the substantial potential of integrating modern crop breeding techniques, such as digital breeding and genetic editing, with generational shortening systems to accelerate crop improvement.

Novel Color Dimming Technology of LED Backlight for Rich Color and Power Saving

  • Park, Se-Ki;Yeo, Dong-Min;Kwon, Yong-Hoon;Kim, Gi-Cherl;Jang, Tae-Seok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1153-1155
    • /
    • 2008
  • Color dimming technology has been developed for high color gamut and aggressive power saving. In our new algorithm, we proposed a new concept of 'color class', with which it is possible to control RGB color luminance effectively and exactly. We reached color gamut of 155% of NTSC 1976 and reduced power consumption under 100 watt for 46 inch LCD.

  • PDF

A study on the microcontroller-based color control circuit for high brightness LEDs (마이크로컨트롤러를 이용한 고휘도 LED의 광색가변 회로에 관한 연구)

  • Yu, Yong-Su;Song, Sang-Bin;Gwark, Jae-Young;Yeo, In-Seon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1342-1344
    • /
    • 2000
  • This paper presents a microcontroller-based control circuit for color variation of high brightness RGB LEDs in $8{\times}8$ matrix array. The control circuit is comprised of an AT89C52 chip, D Flip-flops, and transistors for switching, and is used to adjust the number of LEDs operated for color variation. For a stable operation, it is required that the input current to each LED should be maintained to a normal value irrespective of the number of LEDs operated.

  • PDF

New X-Y Channel Driving Method for LED Backlight System in LCD TVs

  • Cho, Dae-Youn;Oh, Won-Sik;Cho, Kyu-Min;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.334-336
    • /
    • 2007
  • This paper proposes a novel RGB-LED (light emitting diode) backlight system, for 32" LCD TVs, accompanied by a new X-Y Channel drive method in which its row and column switches control the individual division screen. This proposed driving method is able to produce division drive effects such as image improvement and reduced power consumption. Not only that, the number of converter needed in this method, that is 1 with $4^*$(m+n) switches, is much fewer than that of cluster drive method, that is $4^*(m^*n)$.

  • PDF

Shore-to-sea Maritime Visible Light Communication using Color Clustered MIMO (컬러 클러스터 MIMO 기술을 적용한 해상 가시광 통신 시스템)

  • Kim, Hyeong-ji;Chung, Yeon-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1773-1779
    • /
    • 2015
  • Shore-to-sea visible light communication using color clustered multiple-input and multiple-output (MIMO) is presented. The proposed maritime visible light communication (MVLC) offers a low-cost, high-speed wireless link for shore-to-sea maritime communications. Each color cluster is comprised of 50 red, green and blue (RGB) light emitting diodes (LEDs) and is modulated using on-off-keying (OOK). Selection combining is performed at the receiver, producing diversity effect within that color cluster. In this paper, we employ sea states (wave height, wind speed, etc.) data from both Pierson-Moskowitz and JONSWAP spectrum models under atmospheric turbulence conditions. Based on the simulation model, the maritime link quality is analysed in terms of coverage distance and bit error rate performance. The results show that the proposed system provides an efficient MVLC, while satisfying International Association of Lighthouse Authorities (IALA) requirements for maritime buoyage system and also offering sufficient illumination from high power LEDs.

Analysis of Growth and Flowering of Thymus quinquecostatus Using Smart Farming System (스마트 재배시스템을 활용한 백리향 생장 및 개화 분석)

  • Mi Hee Kim;Ui-Lim Choi;Hyeonbin Kim;Kwang Sang Kim;Min Sook Kim;Min Ji Kim;Seung Il Jeong;Gun Woong Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.84-84
    • /
    • 2022
  • 백리향(Thymus quinquecostatus)은 꿀풀과의 낙엽반관목으로 국내에서 자생하는 허브 식물 중 하나이다. 백리향은 특유의 좋은 향기 및 항산화, 항염증, 항균, 미백 등의 효능을 가지는 각종 폴리페놀 성분을 함유하고 있어 의약품이나 기능성 식품, 화장품의 천연 소재 원료로 활용되고 있다. 국내에서 백리향은 재배 환경에 맞추어 주로 고산지대의 노지에서 재배되고 있다. 노지 재배는 지역, 시기, 기후 등의 외부환경에 영향을 받아서 백리향의 유효성분, 품질 및 생산성을 안정적으로 유지하기 어렵다는 한계를 가지고 있다. 따라서 본 연구에서는 스마트팜 시스템을 활용하여 백리향의 유효 성분 등을 안정적으로 얻기 위한 생장조건을 탐색하기 위해 4종의 Light Emitting Diode(LED) 광원과 4종의 토양 조성에 따라서 백리향의 생육조건을 수행하였다. LED는 white, purple, RGB1, RGB2를 사용하였으며, 토양은 상토:펄라이트 비율(상토, 5:1, 3:1, 1:1)로 조성하여 백리향 묘목을 이식한 뒤 생장과 개화시기를 분석하였다. 재배환경은 백리향 재배지의 기상 데이터를 참고하여 동일하게 설정하였으며, 총 8주 동안 생육상태를 관찰하였다. 연구 결과 백리향 재배 4주차에 일부 개체에서 봉오리가 올라오며 개화를 시작하였으며, 8주차에는 대부분의 조건에서 개화를 관찰할 수 있었다. 백리향의 지상부 면적을 비교한 결과 가장 우수한 생장을 보이는 조건은 토양은 3(상토):1(펄라이트) 비율로 분석되었다. 따라서 이번 연구 결과를 바탕으로 백리향 재배에 스마트팜 농업 기술을 활용한다면 기존 노지 재배 한계를 보완하여 안정적이고 지속적인 백리향을 생산할 수 있을것으로 기대된다.

  • PDF

Growth of Leaf Lettuce as Affected by Light Quality of LED in Closed-Type Plant Factory System (완전제어형 식물공장시스템에서 LED 광질에 대한 잎상추의 생육)

  • Cha, Mi-Kyung;Cho, Ju-Hyun;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.291-297
    • /
    • 2013
  • The objective of this study was to know the growth response and light use efficiency of leaf lettuce (Lactuca sativa L.) 'Yorum Cheongchukmyeon' (green leaf lettuce) and 'Hongyom Jeokchukmyeon' (red leaf lettuce) under different RGB (Red:Green:Blue) ratio in a closed-type plant factory system. The plants were hydroponically cultured with a 12-h photoperiod at $20{\sim}25^{\circ}C$, 60~70% RH and 600~900 ${\mu}mol{\cdot}mol^{-1}$ $CO_2$. The light treatments were combined in three colors LEDs (red, blue, and white) and RGB ratios (1 : 4 : 5, 5 : 0 : 5, 5 : 2 : 3, 7 : 0 : 3, 7 : 1 : 2, and 8 : 1 : 1), however, as the light intensities of treatments were different. Growth characteristic response in both lettuces were significantly as affected by interaction between cultivar and light quality, when they were grown under different light quality conditions. Plant heights of green and red leaf lettuce were the lowest in 1 : 4 : 5 and 8 : 1 : 1, respectively. The highest length and number of leaf were showed 8 : 1 : 1 and 7 : 0 : 3 for the green and 5 : 2 : 3 and 8 : 1 : 1 for the red, respectively. Shoot dry weights of green and red leaf lettuce were the heaviest in 7 : 0 : 3 and 8 : 1 : 1, respectively. Leaf width and leaf shape index were significant about cultivar and light quality. Leaf widths of green and red leaf lettuce were the largest in 8 : 1 : 1 and 5 : 2 : 3, respectively. Leaf shape index of green and red leaf lettuce were the largest in 1 : 4 : 5 and 1 : 4 : 5, respectively. Shoot fresh weight and light use efficiency were significant about cultivar and light quality. Shoot fresh weights of green and red leaf lettuce were the heaviest in 7 : 0 : 3 and 8 : 1 : 1, respectively. Light use efficiencies of green and red leaf lettuce were the highest in 7 : 0 : 3 and 5 : 0 : 5, respectively. These results suggested that the ratio of RGB was 5~7 : 0~2 : 1~3 to cultivate leaf lettuce in a plant factory system.

LED Sensitive Light System Development by Brain-wave (LED감성조명 장치 개발을 통한 뇌파분석)

  • Choi, Keum-Yeon;Eo, Ik-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.61-66
    • /
    • 2010
  • The purpose of this experiment is to analyze the basic status of brain. Which are consist of rest, attention and concentration, of the brain by measuring the temperature of color by changing RGB color after manufacturing LED-illumination stand. Basic status (rest, attention and concentration) of experimenter were measured temperature of colors having three difference temperature like as $2,300^{\circ}K$, $4,000^{\circ}K$ and $6,000^{\circ}K$. The results was shown that experimenter feels more comfortable and relaxation by decreasing the temperature of color. For example we can see the little increase of concentration index at $4,000^{\circ}K$ condition and we can estimate that right brain can be more activated at the $4,000^{\circ}K$ condition. But we can not find out any different at the $6,000^{\circ}K$ condition. Main cause of no difference from the color temperature was the similarity of color temperature under the general fluorescent lamp. And interface temperature of radiant heat design results LED and PCB was approximately 80 degrees to COMSOL Multiphysics, and changed until approximately 50 degrees until a floor plane of PCB, and verification as arranged chip LED to metal PCB, and it was possible, and a near radiant heat design was confirmed to an approximate value of, as a result, acid manufacture.