• Title/Summary/Keyword: RGB 카메라

Search Result 273, Processing Time 0.021 seconds

A Method for Effective Homography Estimation Applying a Depth Image-Based Filter (깊이 영상 기반 필터를 적용한 효과적인 호모그래피 추정 방법)

  • Joo, Yong-Joon;Hong, Myung-Duk;Yoon, Ui-Nyoung;Go, Seung-Hyun;Jo, Geun-Sik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.2
    • /
    • pp.61-66
    • /
    • 2019
  • Augmented reality is a technology that makes a virtual object appear as if it exists in reality by composing a virtual object in real time with the image captured by the camera. In order to augment the virtual object on the object existing in reality, the homography of images utilized to estimate the position and orientation of the object. The homography can be estimated by applying the RANSAC algorithm to the feature points of the images. But the homography estimation method using the RANSAC algorithm has a problem that accurate homography can not be estimated when there are many feature points in the background. In this paper, we propose a method to filter feature points of a background when the object is near and the background is relatively far away. First, we classified the depth image into relatively near region and a distant region using the Otsu's method and improve homography estimation performance by filtering feature points on the relatively distant area. As a result of experiment, processing time is shortened 71.7% compared to a conventional homography estimation method, and the number of iterations of the RANSAC algorithm was reduced 69.4%, and Inlier rate was increased 16.9%.

Application of Drone for Analysis of 2D Pollutant Mixing in River (하천에 유입된 오염물질의 2차원 혼합 분석을 위한 드론의 활용)

  • Seo, Il Won;Baek, Donghae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.100-100
    • /
    • 2017
  • 하천에 유입된 오염물질의 2차원 혼합거동은 하천 주흐름에 의한 이송현상과 유속 성분의 수심평균 값에 대한 공간적 편차로부터 야기되는 분산현상으로 설명 할 수 있다. 이는 3차원 이송확산 방정식으로부터 수심 적분된 2차원 이송-분산 방정식으로 수학적 유도가 가능하며, 수심방향으로 적분하는 과정에서 발생되는 농도의 분산항은 Taylor Dispersion 개념에 기초하여 종방향 및 횡방향의 2차원 분산계수로 표현된다. Fischer(1978)는 연직방향 유속분포로부터 2차원 분산계수를 추정하는 해석해를 수학적으로 유도하였으나, 실제 하천에서 정밀한 연직방향 유속분포를 계측하는 것은 많은 비용 및 노동력을 초래한다. 따라서 선행 연구자들은 2차원 혼합모형의 분산계수를 산정하고자 실험적 방법으로써 추적자실험을 수행하였다. 추적자실험은 추적자 물질을 수체에 주입한 후 농도의 변화를 관측함으로써 추적자물질이 하천에서 이송 및 분산되는 과정을 이해하는데 유용하다. 기존의 추적자실험은 고정된 위치에서 농도를 계측하여 시계열적인 농도의 변화를 관측한 후, 오염운 동결가정을 통해 종,횡방향 분산계수의 산정이 가능하지만, 오염물질 농도의 공간적 분포를 얻기에는 한계가 있다. 본 연구에서는 기존의 추적자실험법의 한계를 극복하고자 형광물질을 이용한 추적자실험을 수행함과 동시에 드론에 장착된 디지털카메라를 이용하여 항공영상을 취득 및 분석하여, 하천에 주입된 형광물질의 농도분포를 시공간적으로 추출하는 기법을 개발하고, 이를 바탕으로 오염물질의 2차원 혼합거동을 분석하였다. 본 실험은 한국건설기술연구원의 안동하천실험센터의 A3실험수로에서 수행되었으며, 실험수로는 평균 하폭 5 m, 평균 수심 0.44 m, 유량 $0.96m^3/s$의 실제 소규모 하천과 유사한 축척을 가지고 있다. 추적자물질은 Rhodamine WT 용액이 사용되었으며, 실험수로 내 설치된 15개의 형광광도계(YSI-600OMS)를 이용하여 농도를 측정하였다. 항공영상의 취득을 위해 이용된 드론은 DJI-Phantom 3 Professional 이며, 3840x2160의 해상도로 초당 30 frame의 동영상으로 취득되었다. 영상의 정합 및 좌표화를 위해 RTK-GPS를 이용하여 12개의 지상 기준점의 좌표를 취득한 후, 사영변환을 통해 영상좌표를 지상좌표로 변환하였다. 영상의 픽셀값을 농도장으로 변환하기 위해 각 RGB 밴드의 픽셀값을 통계적으로 분석하여 농도장으로 변환하였으며, 영상으로부터 얻은 농도장은 형광광도계에 의해 실측된 농도와 결정계수 0.9이상의 수준으로 정확도를 나타냈다.

  • PDF

Effect of All Sky Image Correction on Observations in Automatic Cloud Observation (자동 운량 관측에서 전천 영상 보정이 관측치에 미치는 효과)

  • Yun, Han-Kyung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.103-108
    • /
    • 2022
  • Various studies have been conducted on cloud observation using all-sky images acquired with a wide-angle camera system since the early 21st century, but it is judged that an automatic observation system that can completely replace the eye observation has not been obtained. In this study, to verify the quantification of cloud observation, which is the final step of the algorithm proposed to automate the observation, the cloud distribution of the all-sky image and the corrected image were compared and analyzed. The reason is that clouds are formed at a certain height depending on the type, but like the retina image, the center of the lens is enlarged and the edges are reduced, but the effect of human learning ability and spatial awareness on cloud observation is unknown. As a result of this study, the average cloud observation error of the all-sky image and the corrected image was 1.23%. Therefore, when compared with the eye observation in the decile, the error due to correction is 1.23% of the observed amount, which is very less than the allowable error of the eye observation, and it does not include human error, so it is possible to collect accurately quantified data. Since the change in cloudiness due to the correction is insignificant, it was confirmed that accurate observations can be obtained even by omitting the unnecessary correction step and observing the cloudiness in the pre-correction image.