• 제목/요약/키워드: RG 5.71

검색결과 8건 처리시간 0.022초

Change of Ginsenoside Composition in Ginseng Extract by Vinegar Process

  • Ko, Sung-Kwon;Lee, Kyung-Hee;Hong, Jun-Kee;Kang, Sung-An;Sohn, Uy-Dong;Im, Byung-Ok;Han, Sung-Tai;Yang, Byung-Wook;Chung, Sung-Hyun;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.509-513
    • /
    • 2005
  • The purpose of this study was to develop a new preparation process of ginseng extract using high concentrations of ginsenoside $Rg_3$, a special component in red ginseng. From when the ginseng saponin glycosides transformed into the prosapogenins chemically, they were analyzed using the HPLC method. The ginseng and ginseng extract were processed with several treatment conditions of an edible brewing vinegar. The results indicated that ginsenoside $Rg_3$ quantities increased over 4% at the pH 2-4 level of vinegar treatment. This occurred at temperatures above $R90^{\circ}C$, but not occurred at other pH and temperature condition. In addition, the ginseng and ginseng extract were processed with the twice-brewed vinegar (about 14% acidity). This produced about 1.5 times more ginsenoside $Rg_3$ than those processed with regular amounts of brewing vinegar (about 7% acidity) and persimmon vinegar (about 3% acidity). Though the white ginseng extract was processed with the brewing vinegar over four hr, there was no change for ginsenoside $Rg_3$. However, the VG8-7 was the highest amount of ginsenoside $Rg_3$ (4.71%) in the white ginseng extract, which was processed with the twice-brewed vinegar for nine hr. These results indicate that ginseng treated with vinegar had 10 times the quantity of ginsenoside $Rg_3$, compared to the amount of ginsenoside $Rg_3$ in the generally commercial red ginseng, while ginsenoside $Rg_3$ was not found in raw and white ginseng.

Study on biosynthesis of ginsenosides in the leaf of Panax ginseng by seasonal flux analysis

  • Kim, Dongmin;Han, Jaehong
    • Journal of Applied Biological Chemistry
    • /
    • 제62권4호
    • /
    • pp.315-322
    • /
    • 2019
  • Seasonal ginsenoside flux in the leaves of 5-year-old Panax ginseng was analyzed from the field-grown ginseng, for the first time, to study possible biosynthesis and translocation of ginsenosides. The concentrations of nine major ginsenosides, Rg1, Re, Rh1, Rg2, R-Rh1, Rb1, Rc, Rb2, and Rd, were determined by UHPLC during the growth in between April and November. It was confirmed total ginsenoside content in the dried ginseng leaves was much higher than the roots by several folds whereas the composition of ginsenosides was different from the roots. The ginsenoside flux was affected by ginseng growth. It quickly increased to 10.99±0.15 (dry wt%) in April and dropped to 6.41±0.14% in May. Then, it slowly increased to 9.71±0.14% in August and maintained until October. Ginsenoside Re was most abundant in the leaf of P. ginseng, followed by Rd and Rg1. Ginsenosides Rf and Ro were not detected from the leaf. When compared to the previously reported root data, ginsenosides in the leaf appeared to be translocated to the root, especially in the early vegetative stage even though the metabolite translocated cannot be specified. The flux of ginsenoside R-Rh1 was similar to the other (20S)-PPT ginsenosides. When the compositional changes of each ginsenoside in the leaf was analyzed, complementary relationship was observed from ginsenoside Rg1 and Re, as well as from ginsenoside Rd and Rb1+Rc. Accordingly, ginsenoside Re in the leaf was proposed to be synthesized from ginsenoside Rg1. Similarly, ginsenosides Rb1 and Rc were proposed to be synthesized from Rd.

Cyber attack taxonomy for digital environment in nuclear power plants

  • Kim, Seungmin;Heo, Gyunyoung;Zio, Enrico;Shin, Jinsoo;Song, Jae-gu
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.995-1001
    • /
    • 2020
  • With the development of digital instrumentation and control (I&C) devices, cyber security at nuclear power plants (NPPs) has become a hot issue. The Stuxnet, which destroyed Iran's uranium enrichment facility in 2010, suggests that NPPs could even lead to an accident involving the release of radioactive materials cyber-attacks. However, cyber security research on industrial control systems (ICSs) and supervisory control and data acquisition (SCADA) systems is relatively inadequate compared to information technology (IT) and further it is difficult to study cyber-attack taxonomy for NPPs considering the characteristics of ICSs. The advanced research of cyber-attack taxonomy does not reflect the architectural and inherent characteristics of NPPs and lacks a systematic countermeasure strategy. Therefore, it is necessary to more systematically check the consistency of operators and regulators related to cyber security, as in regulatory guide 5.71 (RG.5.71) and regulatory standard 015 (RS.015). For this reason, this paper attempts to suggest a template for cyber-attack taxonomy based on the characteristics of NPPs and exemplifies a specific cyber-attack case in the template. In addition, this paper proposes a systematic countermeasure strategy by matching the countermeasure with critical digital assets (CDAs). The cyber-attack cases investigated using the proposed cyber-attack taxonomy can be used as data for evaluation and validation of cyber security conformance for digital devices to be applied, and as effective prevention and mitigation for cyber-attacks of NPPs.

추출용매에 따른 홍삼 및 흑삼의 산성다당체와 진세노사이드 함량 모니터링 (Use of extraction solvent method to monitor the concentrations of acidic polysaccharides and ginsenosides from red and black ginseng)

  • 이기동
    • 한국식품저장유통학회지
    • /
    • 제30권5호
    • /
    • pp.857-867
    • /
    • 2023
  • 본 연구에서는 홍삼과 흑삼의 기능성 성분 추출 극대화를 위해 추출 용액의 ethanol 농도와 추출 온도를 고려하여 추출 수율, 산성다당체 및 ginsenosides의 함량 변화를 반응표면분석법을 통해 모니터링해 보고 적정 추출조건을 찾아보았다. 홍삼 및 흑삼의 가용성 고형분 함량에 대한 모델식의 R2는 각각 0.9679(p<0.01), 0.8545(p<0.1)였다. 홍삼가용성 고형분의 최적 추출조건은 ethanol 농도 1.52%에서 67.27℃로 추출 시 그 함량이 5.29%였으며, 흑삼 가용성 고형분의 최적 추출조건은 ethanol 농도 3.12%에서 66.13℃로 추출 시 그 함량이 6.11%였다. 홍삼 및 흑삼의 산성다당체 함량에 대한 모델식의 R2는 각각 0.9251(p<0.05), 0.88379(p<0.1)였다. 홍삼의 산성다당체 최적 추출조건은 ethanol 농도 4.03%에서 69.61℃로 추출 시 그 함량이 1.86 mg/mL였다. 흑삼의 산성다당체 최적 추출조건은 ethanol 용액 농도 24.67%에서 71.14℃로 추출 시 그 함량이 1.80 mg/mL였다. 홍삼의 ginsenoside Rg1 및 Rb1 함량에 대한 모델식의 R2는 각각 0.8941(p<0.05), 0.8718(p<0.1)이었다. 홍삼의 ginsenosides 최적 추출조건은 ethanol 농도 79.92%에서 70.62℃로 추출 시 ginsenoside Rg1 함량이 0.22 mg/mL였으며, ethanol 농도 79.94%에서 69.46℃에서 ginsenoside Rb1 함량이 0.36 mg/mL였다. 흑삼의 ginsenosides 최적 추출조건은 ethanol 농도 75.11%에서 65.21℃로 추출할 경우 ginsenoside Rb1 함량이 0.28 mg/mL였으며, ethanol 농도 75.70%에서 65.49℃에서 ginsenoside Rg3 함량이 0.31 mg/mL였다. 홍삼 및 흑삼의 산성다당체 수율과 ginsenoside 수율을 모두 만족하는 최적추출조건은 ethanol 농도 35-50%의 범위 내에서 70℃였다.

Modeling cryptographic algorithms validation and developing block ciphers with electronic code book for a control system at nuclear power plants

  • JunYoung Son;Taewoo Tak;Hahm Inhye
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.25-36
    • /
    • 2023
  • Nuclear power plants have recognized the importance of nuclear cybersecurity. Based on regulatory guidelines and security-related standards issued by regulatory agencies around the world including IAEA, NRC, and KINAC, nuclear operating organizations and related systems manufacturing organizations, design companies, and regulatory agencies are considering methods to prepare for nuclear cybersecurity. Cryptographic algorithms have to be developed and applied in order to meet nuclear cybersecurity requirements. This paper presents methodologies for validating cryptographic algorithms that should be continuously applied at the critical control system of I&C in NPPs. Through the proposed schemes, validation programs are developed in the PLC, which is a critical system of a NPP's I&C, and the validation program is verified through simulation results. Since the development of a cryptographic algorithm validation program for critical digital systems of NPPs has not been carried out, the methodologies proposed in this paper could provide guidelines for Cryptographic Module Validation Modeling for Control Systems in NPPs. In particular, among several CMVP, specific testing techniques for ECB mode-based block ciphers are introduced with program codes and validation models.

Development of the framework for quantitative cyber risk assessment in nuclear facilities

  • Kwang-Seop Son;Jae-Gu Song;Jung-Woon Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2034-2046
    • /
    • 2023
  • Industrial control systems in nuclear facilities are facing increasing cyber threats due to the widespread use of information and communication equipment. To implement cyber security programs effectively through the RG 5.71, it is necessary to quantitatively assess cyber risks. However, this can be challenging due to limited historical data on threats and customized Critical Digital Assets (CDAs) in nuclear facilities. Previous works have focused on identifying data flows, the assets where the data is stored and processed, which means that the methods are heavily biased towards information security concerns. Additionally, in nuclear facilities, cyber threats need to be analyzed from a safety perspective. In this study, we use the system theoretic process analysis to identify system-level threat scenarios that could violate safety constraints. Instead of quantifying the likelihood of exploiting vulnerabilities, we quantify Security Control Measures (SCMs) against the identified threat scenarios. We classify the system and CDAs into four consequence-based classes, as presented in NEI 13-10, to analyze the adversary impact on CDAs. This allows for the ranking of identified threat scenarios according to the quantified SCMs. The proposed framework enables stakeholders to more effectively and accurately rank cyber risks, as well as establish security and response strategies.

Protective Effect of Ginsenoside Rgl on H2O2-Induced Cell Death by the Decreased Ceramide Level in LLC-PK1 Cells

  • Lee, Youn-Sun;Yoo, Jae-Myung;Shin, Hyun-Woo;Kim, Dong-Hyun;Lee, Yong-Moon;Yun, Yeo-Pyo;Hong, Jin-Tae;Oh, Sei-Kwan;Yoo, Hwan-Soo
    • Journal of Ginseng Research
    • /
    • 제30권1호
    • /
    • pp.1-7
    • /
    • 2006
  • Ceramide has been involved in celt death and acted as a lipid mediator of stress responses. Elevation of ceramide level was reported to occur in oxidative stress and lead to cell death in many cell types. This study was undertaken to elucidate a protective role of ginsenoside Rgl in cell death induced by oxidative stress. When LLC-PK1 cells were treated with $H_2O_2$ at a concentration of $400{\mu}M$ for 5 hr, cell death was observed and a released LDH activity indicative of cytotoxicity was Increased. $H_2O_2$ exposure to LLC-PK1 cells was shown to elevate the content of total ceramide by approximately 200% compared to control cells. Ceramide level was hypothesized to be a key to a reversal of cell death to survival. Ginsenoside Rgl at the concentrations ranging from 12.5 to $250{\mu}M$ protected LLC-PK1 cells from cell death induced by $H_2O_2\;at\;400{\mu}M$ for 5 hr, and decreased the ceramide level relative to $H_2O_2$. Ginsenoside Rgl inhibited neutral human ceramidase by 71% of controls, while sphingomyelinase was not inhibited. These results suggest that ginsenoside Rgl show the protection against cell death via the modulation of ceramide metabolism, and ceramide may be a promising therapeutic target for human diseases related to cell death.

완성품 돋보기와 조제가공된 돋보기가 광학적 요소에 미치는 영향 (The Effect of the Optical Points Difference between Finished-Reading Glasses and Dispensing Reading Glasses)

  • 심영철;유근창;김인숙
    • 한국안광학회지
    • /
    • 제13권3호
    • /
    • pp.65-71
    • /
    • 2008
  • 목적: 본 연구는 시중에서 유통되고 있는 완성품 돋보기와 안경원에서 조제가공된 돋보기의 광학적 중심점간의 문제점을 비교하여 눈에 미치는 영향을 연구하였다. 방법: 연구대상은 +1.00D에서 +4.00D까지 11개의 범주로 나누어 측정하였으며, 광주시 광산구에 사는 안질환이 없는 40세 이상의 남녀로 안경테 사이즈를 세 그룹으로 나누어 광학적 중심점과 광학적 높이를 측정하였다. 결과: 광학적 중심점은 57 mm에서 80 mm 범위 사이에 있었으며 대부분 61 mm에서 65 mm(64.6%) 사이였다. 광학적 중심높이 오차는 1 mm에서 8 mm 범주에 있었으며 4 mm가 공통범주(23%)에 속하였다. 완성품 돋보기는 불규칙한 사이즈를 가지고 있었다. 조사대상들은 거의 대부분 75.5%(151명)가 시중에 유통되는 완성품 돋보기를 사용하고 있었다. 대상자 151명을 조사한 결과, 완성품 돋보기의 광학적 중심점과 장용자의 P.D 사이에는 4 mm의 공통된 오차가 있었다. 더구나 광학적 중심 높이와 착용자의 O.H 사이에는 3 mm에서 4 mm의 오차가 있었다. 151명의 완성품 돋보기를 사용하는 사람들은 모두 피곤함을 느끼고 있었으며, 53명(35%)은 돋보기 착용 후 10분에서 20분 후부터 피곤함을 호소하였다. 이러한 조사를 바탕으로, 우리는 돋보기에 있어서 광학적 중심점 오차시 발생되는 프리즘 값을 발견할 수 있었으며 이는 완성품 돋보기가 착용하기에 충분하지 않다는 것을 나타낸다. 완성품 돋보기는 렌즈 굴절력과 상관관계가 있다는 것을 알 수 있었으며 또한 독일 RAL-915 규정을 따르지 않는다는 것도 알 수 있었다. 결론: 우리가 조사한 바를 기초로 할 때 완성품 돋보기는 우리의 시생활에 많은 위험적인 요소를 품고 있으며 안경사는 광학적 중심점을 토대로 정확하게 조제가공된 돋보기를 소비자에게 반드시 권하여야 할 것이다.

  • PDF