• Title/Summary/Keyword: RFPM Generator

Search Result 12, Processing Time 0.027 seconds

Modelling and Analysis of AFPM, RFPM Compound Generator (AFPM, RFPM 복합발전기의 모델링 및 해석)

  • Kim, Jin-Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.459-462
    • /
    • 2017
  • In this study, we design, model, and analyze a compound generator that combines the axial flux permanent magnet (AFPM,) and radial flux permanent magnet (RFPM), which is expected to increase power generation by allowing the magnets to be placed on the upper, lower, left, and right sides of the same-sized generator. Through the design, modelling, and analysis of AFPM and RFPM compound generators, the generator load evaluation results rated output of 500.25 W and efficiency of 87.60%, respectively, at a rated speed of 600 rpm. By employing this complex generation system,these findings are expected to contribute to the activation of a small power generation system.

A Design on Reduction Cogging Torque of Dual Generator Radial Flux Permanent Magnet Generator for Small Wind Turbine

  • Lee, Gyeong-Chan;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1590-1595
    • /
    • 2013
  • In this paper, the design for an electromagnetic structure and reduction cogging torque of a dual generator structured RFPM generator, which is a combination of the inner- and outer-rotor types, has been proposed. We call this a dual generator radial flux permanent magnet generator. To reduce the cogging torque, firstly, stator tooth pairing was designed; secondly, stator displacement was designed and finally, stator tooth pairing and stator displacement were carried out simultaneously. We found the optimal design condition about stator tooth pairing angle combination and stator displacement angle for cogging torque minimization. As a result, a cogging was reduced by 93.3[%] by this study.

A Study on the Ultra-Small Pendulum Generator Applicable to Wearable IT Device (웨어러블 IT 기기에 적용 가능한 초소형 진자 발전기에 관한 연구)

  • Jee, In-Ho;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.139-143
    • /
    • 2022
  • In this study, Among the electromagnetic induction power generation (EMG) techniques, the design specifications of the RFPM were set, and a suitable test prototype was manufactured through finite element analysis (FEM, 2D) required for characteristic calculation. In addition, a dedicated testing device (Dynamo-Tester) was designed and manufactured to measure and analyze the test prototype. The test product was measured with a test device and the result is analyzed to suggest a method that can be applied by generating as much output power as possible to charge the battery of the wearable IT device using actual kinetic energy of the human body. As a result of the test, the output power was 1.679W and the efficiency was 79.31% under the conditions of rotation speed of 780.9rpm, torque of 0.264kgf/cm, and load current of 73.6~73.9mA. Therefore, it was analyzed that it was possible to charge the wearable device with the output of the ultra-small RFPM pendulum generator.

A Study on Output Characteristic Design of Radial Field Permanent Magnet Synchronous Generator for Urban Wind Turbine (도심형 풍력 발전기용 방사 자속형 영구자석 동기 발전기의 출력특성에 관한 연구)

  • Bae, Byung-Duk;Yun, Seung-Ju;Jung, Tae-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1001-1002
    • /
    • 2011
  • Recently, issues regarding environment and the diversification of dependence in oil are watched with keen interest. Wind power attracts most interest because of its high-energy efficiency with eco friendly functions. In this paper, deal with design of radial field permanent magnet synchronous generator for a urban wind power system. Analyzed the RFPM generator by electromagnetic, and designed wind power generator with this. The output characteristic of machine and all of process is analyzed by 2D FEA due to geometrical structures of RFPM machine.

  • PDF

Design of 3MW class outer rotor type PMSG for wind turbine (풍력 발전용 3MW급 외전형 영구자석 동기발전기 설계)

  • Kim, Taehun;Kim, Geohwa;Kim, Dongeun;Chung, Chinhwa;Park, H.C.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.179.1-179.1
    • /
    • 2010
  • 포항공과대학교 풍력특성화대학원에서는 3MW급 외전형 영구자석 동기발전기 설계를 진행하고 있다. 여기서 외전형이란 RFPM 발전기에서 회전자가 바깥에서 회전하는 형태로 기존의 RFPM 발전기와 비교하여 같은 공극직경에 더 많은 자석을 채택할 수 있고, 회전자와 터빈 블레이드를 직접 연결이 가능하다. 또한, 회전자를 외부에 노출 시킬 수 있으므로 냉각에 유리한 면이 있다. 설계 변수 중 출력과 회전수를 고정시키고 각 극수와 공극 직경, 전압을 변화함에 따른 전기적 특성을 비교하고, 그 중 최적의 모델을 선택한다. 선택된 모델의 전자기장 해석, 손실 계산, 열분석을 수행한다. 본 논문에서는 각 경우에 따른 결과를 비교하고 최적 모델에 대한 해석 결과에 대해 요약한다.

  • PDF

Alternative Design of 3MW Offshore PM Synchronous Generator (해상용 3 MW 영구자석형 동기발전기의 대안설계)

  • Kim, Dong-Eon;Lee, Hong-Gi;Han, Hong-Sik;Jung, Yung-Gyu;Suh, Hyung-Suck;Chung, Chin-Wha;Lim, Min-Soo;Kwak, Seung-Keun;Oh, Man-Soo;Choi, June-Hyuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.274-277
    • /
    • 2008
  • Pohang Wind Energy Research Center (PoWER-C) is developing a 3 MW Radial Flux Permanent Magnet (RFPM) Synchronous Generator for offshore Wind Energy Converter (WEC). The blade rotor rpm is 15.7 and the gear ratio is set to be 92.93. The nominal generator rpm at the rated load is about 1459. Baseline design with surface mounted PM magnets are completed. However, there is some concern about the excessive eddy current heating in the magnets. To alleviate this problem, another design with embedded magnet is going on. With embedded magnets, the generator length should be increased to compensate the increased flux leakage. But the field fluctuation in the magnets due to the slots are greatly reduced. This means less eddy currents and lower magnet operating temperature. In this report, engineering efforts for embedded rotor is presented.

  • PDF

A Study on Cogging Torque Reduction of Dual Stator Radial Flux Permanent Magnet Generator Using the Permanent Magnet Displacement Design of Rotor (회전자의 영구자석 위치 이동을 이용한 이중 고정자 RFPM 발전기 코깅토크 저감 연구)

  • Lee, Gyeong-Chan;Jung, Tae-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.4
    • /
    • pp.49-55
    • /
    • 2014
  • In this paper, we propose the cogging toque reduction technique of the dual stator radial flux permanent magnet generator. The cogging toque is caused by the torque ripple increase and vibration and noise of the generator. And it is important factor determining cut-in speed of the small wind generator. To reduce cogging torque, permanent magnet displacement was studied. And the theory of the permanent magnet displacement was formulated and the cogging torque reduction according to the permanent magnet displacement was confirmed through the finite element method.

Status of 3 MW PM Synchronous Generator Development Project for Off-shore WECS (3MW 해상풍력용 영구자석 동기발전기 개발현황)

  • Kim, Dong-Eon;Han, Hong-Sik;Lee, Hong-Gi;Jung, Yung-Gyu;Suh, Hyung-Suck;Chung, Chin-Wha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.423-426
    • /
    • 2007
  • Pohang Wind Energy Research Center (PoWER-C) is developing a 3 MW Radial Flux Permanent Magnet (RFPM) Synchronous Generator for offshore Wind Energy Converter (WEC). The rotor rpm is 15.7 and the gear ratio is set to be 92.93. The nominal generator rpm at the rated load is about 1459. To reduce the switching loss in the power electronics, the maximum frequency is limited to 100 Hz. This requirement limits the number of pole to six or eight. Permanent magnet excitation is assumed for higher energy yield and higher efficiency. In this report, the requirements and the first efforts for the physics design are described.

  • PDF

Design of a kW-class PM Generators for Wind Turbine (kW급 풍력 발전기 설계)

  • Lee, Soohoh;Kim, Geohwa;Won, Junghyun;Kim, Dong-Eon;Park, H.C.;Chung, Chinwha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.179.2-179.2
    • /
    • 2010
  • This research has been performed to provide fundamental design aspects of Permanent Magnet Synchronous Generators(PMSGs) for a kilowatt class wind turbine. When it comes to kilowatt class wind turbines, the typical type of generators are Axial Flux Permanent Magnet(AFPM) generators. However, Radial Flux Permanent Magnet(RFPM) generators have been optimally designed to study the output characteristics of a kilowatt class wind turbine in Graduate School of Wind Energy, POSTECH. An existing squirrel-cage rotor has been modified for another newly designed permanent magnet rotor to utilize the commercially existing stator rotor. Electromagnetic analysis utilizing Finite Element Methods tools(ANSYS, MAXWELL 2D) has been applied to analyze the system.

  • PDF