• Title/Summary/Keyword: RFID antenna

Search Result 305, Processing Time 0.025 seconds

Radiation Efficiency Improvement of RFID Tag Antenna for Metallic Objects Printed on Lossy Substrate (손실 기판을 이용한 금속 부착형 RFID 태그 안테나의 복사 효율 향상)

  • Son, Hae-Won;Choi, Won-Kyu;Choi, Gil-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1265-1271
    • /
    • 2008
  • In this paper, we propose a new antenna design method for RFID tass on metallic surfaces using a low-cost, high-loss substrate such as FR4. The proposed design method highly reduces the substrate loss due to its dielectric loss, and so improves the radiation efficiency of the tag antenna more than double compared with a conventional PIFA(planar inverted-F antenna). The equivalent circuit model of the antenna according to the proposed method was established and its characteristics were analyzed systematically in this paper. The excellency of the proposed design method was verified by the fabrication and measurement of a prototype antenna.

Miniaturization Design of Tag Antenna for RFID System in 910 MHz band (910 MHz 대역 RFID용 태그 안테나의 소형화 설계)

  • Park, Gun-Do;Min, Kyeong-Sik
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.363-368
    • /
    • 2008
  • This paper presents a miniaturization design technique of radio frequency identification (RFID) tag antenna operated in 910 MHz band. Miniaturization structure design for a tag antenna is performed by structure application of the folded dipole and meander line. In order to realize the maximum power transmission, imaginary part of a chip impedance and a tag antenna impedance is matched by complex conjugate number. The optimized tag antenna size is $50\;nm\;{\times}\;40\;nm\;{\times}\;1.6\;nm$ and its size is reduced about 62 % comparison with antenna size of reference [4]. The measured results of fabricated tag antenna are confirmed the reasonable agreement with prediction. The read range of the tag antenna with chip observed about 5 m.

Open-Ended Two-Strip Meander-Line Antenna for RFID Tags

  • Son, Hae-Won;Choi, Gil-Young;Pyo, Cheol-Sig
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.383-385
    • /
    • 2006
  • A new meander-line antenna consisting of two open-ended strips is proposed for a compact and broadband UHF radio frequency identification tag. An equivalent circuit model for the proposed antenna is derived and used to perform a simple and wideband impedance match to an arbitrary complex impedance of a tag chip without any additional matching network. The performance of the proposed antenna is validated by comparing calculated and measured results, which show good agreement.

  • PDF

A Hybrid Reader Antenna for Near- and Far-Field RFID in UHF Band (근거리장 및 원거리장용 하이브리드 RFID 리더 안테나)

  • Lee, Chu-Yong;Han, Wone-Keun;Park, Ik-Mo;Choo, Ho-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.174-182
    • /
    • 2009
  • In this paper, we propose a novel hybrid reader antenna using a triangular and rectangular sub-patch for near- and far-field RFID reader in UHF band. The antenna operates at 912 MHz, and the low-cost mass-production is available, since the antenna can be built by printing on a FR-4 substrate. The triangular patch is designed to produce a circularly polarized radiation along the bore-sight direction and the rectangular sub-patch is designed to generate a strong magnetic field over the antenna aperture. The measurement shows Hz field greater than -25 dBA/m(3 cm above the antenna aperture), and exhibits circularly polarized radiation(AR<3 dB) with a radiation gain of 6 dBi.

RFID Reader Antenna with Hilbert Curve Fractal Structure over Partially Grounded Plane (Hilbert 커브 프랙탈 구조를 이용한 부분 접지된 RFID 리더 안테나)

  • Lim, Jung-Hyun;Kang, Bong-Soo;Jwa, Jeong-Woo;Kim, Heung-Soo;Yang, Doo-Yeong
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.4
    • /
    • pp.30-38
    • /
    • 2007
  • In this paper, UHF band RFID reader antenna using filbert curve fractal structure and adding the partially grounded plane at the bottom of antenna, which has a resonant frequency at 910MHz, is proposed. Input impedance of antenna is matched with the feed line of 50ohm by varying the length and width of line segment making up the antenna, and by moving the position of via hole. The gain and directivity of antenna is enhanced as varying the dimension of the partially grounded plane and adding the line segment. The size of fabricated antenna is $68mm\times68mm$. The impedance band width(VSWR<2) is $882\sim942MHz$. The return loss and the gain of fabricated antenna are -18.2dB, 5.3dBi at 910MHz.

Design of Beam-forming Reader Antenna for Train Position Detection using RFID (RFID 시스템 이용한 열차 위치검지용 빔폭 가변형 RFID 리더안테나)

  • Ahn, Chi-Hyung;Cho, Bong-Kwan;Ryu, Sang-Hwan;Oh, Soon-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.105-110
    • /
    • 2015
  • This paper presents a $4{\times}1$ beam-forming reader antenna system for a new type of RFID based train position detection technology. The required beamwidth of the reader antenna is analytically expressed for different train speeds. The proposed antenna system consists of four rectangular patch elements and two switching couplers which are designed, without any impedance matching networks, for two different antenna modes. The switching coupler is a rectangular quadrature coupler with Pin diodes connecting its center line and the ground plane. The beamwidth of the antenna when the diodes are off and on is $18^{\circ}$ and $39^{\circ}$, respectively. The proposed antenna system will be used for a real train test in the near future.

Design of a 900 MHz RFID Compact LTCC Package Reader Antenna Using Faraday Cage (Faraday Cage를 이용한 900 MHz RFID 소형 LTCC 패키지 리더 안테나의 설계)

  • Kim, Ho-Yong;Mun, Byung-In;Lim, Hyung-Jun;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.5 s.120
    • /
    • pp.563-568
    • /
    • 2007
  • In this paper, the proposed package antenna, which is meander line structure with short pin, is miniaturized to realize RF-SoP at 900 MHz RFID band. The RFID BGA(Ball Grid Array) chip is put in a cavity of LTCC Layers. The coupling and cross talk, which are happen between BGA chip and proposed package antenna, are reduced by faraday cage, which consists of ground and via fences, is realized to enhance the isolation between BGA chip and antenna. The proposed antenna structure is focused on the package level antenna realization at low frequency band. The novel proposed package antenna size is $13mm{\times}9mm{\times}3.51mm$. The measured resonance frequency is 0.893 GHz. The impedance bandwidth is 9 MHz. The maximum gain of radiation pattern is -2.36 dBi.

Wide Bandwidth RFID Tag Antenna Design for Protection of Connection Part between Chip and Antenna (칩과 안테나 사이 연결부 보호를 위한 RFID 태그 안테나의 광대역 설계)

  • Lee, Ji-Chul;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.154-160
    • /
    • 2009
  • This paper describes a wide bandwidth RFID tag antenna design for protection of connection part between chip and antenna. A proposed tag antenna size, a resonant frequency and bandwidth are $53{\times}10{\times}1\;mm$, 900 MHz and 800 MHz($500{\sim}1,300\;MHz$) at -10 dB below, respectively. The dielectric materials with different relative permittivity such as polyethylene, glass and silicon were applied for protection of connection part between the proposed antenna and chip on the way of whole and partial housing. The measured return loss and radiation pattern agreed well with the calculation results. The read range of the proposed tag antenna without any housing and of tag antenna with housing covered over all by silicon with 3 mm thickness were observed about 5 m and 4 m, respectively.

UHF & HF RFID Credit Card Size Tag Antenna Designs Using Silver-Ink and Jumper Structure (실버잉크와 점퍼구조를 사용한 신용카드 크기의 UHF & HF RFID 태그 안테나)

  • Nam, Sehyun;Chung, Youchung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.972-977
    • /
    • 2016
  • This paper introduces development process and results of HF & UHF band(13.56 MHz, 920 MHz) tag antennas using a single-side printing method on a PE film. The size of tag antenna is designed in the area of $80mm{\times}50mm$, little bit smaller than a credit card. The UHF tag antenna, $76mm{\times}44mm$, is located at the outside of the card size tag antenna, and the HF tag antenna, $40 mm{\times}42 mm$, is located at the center of the UHF tag antenna. The UHF and HF tag antennas are designed with consideration of coupling effects. The single-side printing method with a jumper structure without using a via is used to make a loop antenna of HF tag antenna. The reading range of UHF tag antenna is about 6m, and the reading of HF tag antenna is about 5 cm. The designed tag antennas have long enough reading ranges for both bands. The tag is applicable to logistics and authentification.

Compact Slot Antenna for 5.8 GHz RFID (5.8 GHz RFID용 소형 슬롯 안테나)

  • Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2763-2768
    • /
    • 2013
  • In this paper, a design method for a compact slot antenna for 5.8 GHz RFID band (5.725-5.875 GHz) is studied. The proposed slot antenna is size-reduced by bending both ends of the straight slot in "I"-shape, and a rectangular feed patch is located inside the slot. The effects of slot length, location of feed patch, and width and length of feed patch on the antenna performance are examined. A prototype antenna with optimized parameters for 5.8 GHz band is fabricated on an FR4 substrate and tested experimentally to verify the results of this study. The experimental results show that the frequency band for a VSWR < 3 ranges 5.72-6.13 GHz (bandwidth 410 MHz), and it corresponds fairly well with the simulated band 5.64-5.97 GHz (bandwidth 330 MHz). The fabricated antenna shows good radiation performance such as maximum power density in both directions normal to the slot plane, low cross-polarization level of < -20 dB, and realized gain > 0 dBi within the frequency band.