• Title/Summary/Keyword: RFID+4D

Search Result 105, Processing Time 0.032 seconds

A Low-pass filter design for suppressing the harmonics of 2.4GHz RFID tag (2.4GHz RFID 태그용 고조파 억제를 위한 저역통과필터의 설계)

  • Cho, Young Bin;Kim, Byung-Soo;Kim, Jang-Kwon
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.3
    • /
    • pp.59-64
    • /
    • 2002
  • In the RFID system using ISM-band, The tag mounted at the object has used the DC power by rectifying the RF signals of the small antenna for operating the micro-controller and memory. The performance of the tag would be reduced because of the second harmonics generated by the nonlinearity of the semiconductor and the spurious signal excited the high order mode of the antenna. This paper has realized the novel type low-pass filter with "the Stub-I type DGS slot structure" to improve the efficiency of the tag by suppressing the harmonics. The optimized frequency character at the pass-band/stop-band has obtained by tuning the stub width and slit width of I type slot. The measured result of the LPF has the cutoff frequency 3.25 GHz, the insertion loss about -0.29~-0.3 dB at pass-band 2.4 GHz~2.5 GHz, the return loss about -27.688~-33.665 dB at pass-band with a good performance, and the suppression character is about -19.367 dB at second harmonics frequency 4.9 GHz. This DGS LPF may be applied the various application as the RFID, WLAN to improve the efficiency of the system by suppressing the harmonics and spurious signals. 

A Single-Feeding Port HF-UHF Dual-Band RFID Tag Antenna

  • Ha-Van, Nam;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.233-237
    • /
    • 2017
  • In this paper, a dual-band high frequency (HF) and ultra-high frequency (UHF) radio-frequency identification (RFID) tag antenna is presented that operates in the 13.56 MHz band as well as in the 920 MHz band. A spiral coil along the edges of the antenna substrate is designed to handle the HF band, and a novel meander open complementary split ring resonator (MOCSRR) dipole antenna is utilized to generate the UHF band. The dual-band antenna is supported by a single-feeding port for mono-chip RFID applications. The antenna is fabricated using an FR4 substrate to verify theoretical and simulation designs, and it has compact dimensions of $80mm{\times}40mm{\times}0.8mm$. The proposed antenna also has an omnidirectional characteristic with a gain of approximately 1 dBi.

A Design of Dual Band LNA for RFID Using Varactor Diode (Varactor를 이용한 RFID 이증 대역 LNA 설계)

  • Choi, Jin-Kyu;Ko, Jae-Hyeong;Chang, Se-Wook;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.151-152
    • /
    • 2008
  • In this paper, a dual band LNA (Low Noise Amplifier) with a matching circuit using varactor diode is designed for 912MHz and 2450MHz RFID system. The operating frequency is controlled by the bias voltage applied to the varactor diode. The measured results demonstrate that gain is 13.6dB and 6.8dB at 912MHz and 2450MHz. The measured NF (Noise Figure) is 1.4dB and 3.1dB at 912MHz and 2450MHz, respectively.

  • PDF

A Novel Carrier Leakage Suppression Scheme for UHF RFID Reader (UHF 대역 RFID 리더 반송파 누설 억압 연구)

  • Jung, Jae-Young;Park, Chan-Won;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.4
    • /
    • pp.489-499
    • /
    • 2011
  • RFID technologies, which allow collecting, storing, processing, and tracking information by wirelessly recognizing the inherent ID of object through an attached electronic tag, have a variety of application areas. This paper presents a novel carrier leakage suppression RF(CLS-RF) front-end for ultra-high-frequency RF identification reader. The proposed reader CLS-RF front-end structure generates the carrier leakage replica through the nonlinear path that contains limiter. The limiting function only preserves the frequency and phase information of the leakage signal and rejects the amplitude modulated tag signal in the envelope. The carrier leakage replica is then injected into the linear path that contains phase shifter. Therefore, the carrier leakage signal is effectively cancelled out, while not affecting the gain of the desired tag backscattering signal. We experimentally confirm that the prototype shows a significant improvement in the leakage to signal ratio by up to 36 dB in 910 MHz, which is consistent with our simulation results.

Design and Performance Analysis of Emulator for Standard Conformance Test of Active RFID

  • Song, Tae-Seung;Lee, Wang-Sang;Kim, Tae-Yeon;Lyou, Joon
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.376-386
    • /
    • 2009
  • An active radio frequency identification (RFID) system has the advantages of a long identification distance and a good identification rate, overcoming passive RFID drawbacks. Therefore, interest in the development of active RFID systems has been gradually increasing in areas of harbor logistics and national defense. However, some identification failures between active RFID systems developed under the same standards have been reported, presumably due to a lack of development of accurate evaluation methods and test equipment. We present a realization of the hardware and software of an emulator to evaluate the standard conformance of an active RFID system in a fully anechoic chamber. The performance levels of the designed emulator are analyzed using Matlab/Simulink simulations, and the applicability of the emulator is verified by evaluating the standard conformance of a real active RFID tag. Finally, we propose a new evaluation method by incorporating a self-running test mode environment into the RFID tags to reduce testing time and increase testing accuracy. The application of the suggested method to actual tags improves measurement uncertainty by 0.56 dB over that obtained using existing methods.

A Cancellation Technique of TX Leakage Signal for Emhanced Readability in UHF-band RFID Readers (UHF대역 RFID Reader에서 인식률 향상을 위한 송신누설신호 상쇄기술)

  • Noh, Eui-Ho;Lee, Jong-Hyuk;Kim, Nam-Yoon;Kim, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5A
    • /
    • pp.543-550
    • /
    • 2011
  • In order to improve readability, a leakage-signal canceller has been proposed in UHF-band RFID readers. The proposed canceller is composed of two blocks: an environment monitoring block for detection of Tx and RX power levels and a leakage cancellation block. The leakage canceller consists of directional-couplers, digital attenuators and phase shifters based on the feed-forward scheme. The leakage canceller is located between antenna and reader. An improved experimental characterization of the scheme is presented with results from the reader operating in the Korean RFID frequency band, conforming the validity of the approach with more than 29 dB of leakage cancellation.

(Design of RFID Reader Antenna Using Two Orthogonally Oriented 1x2 Sub-Arrays at 433 MHz) (직교형으로 배열된 2개의 1x2서브-어레이를 이용한 433MHz에서 동작하는 RFID 리더용 안테나 설계)

  • Kim Jong-Sung;Park Seung-Mo;Choi Won-Kyu;Seong Nak-Seon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.9 s.339
    • /
    • pp.97-100
    • /
    • 2005
  • An orthogonal antenna is presented for reader application of radio frequency identification (RFID) at 433 MHz. Two 1x2 sub-arrays are orthogonally placed on a ground plane and two different feeding networks are applied to control horizontal and vertical radiation current flows for each sub-array, respectively. Inverted-F structures are used as radiation elements and can generate two linear polarizations by relative current distribution of radiators forming sub-arrays. Antenna gains are 2.7 and 0.4 dBi and isolation between two input ports is less than 25dB.

Compact Slot Antenna for 5.8 GHz RFID (5.8 GHz RFID용 소형 슬롯 안테나)

  • Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2763-2768
    • /
    • 2013
  • In this paper, a design method for a compact slot antenna for 5.8 GHz RFID band (5.725-5.875 GHz) is studied. The proposed slot antenna is size-reduced by bending both ends of the straight slot in "I"-shape, and a rectangular feed patch is located inside the slot. The effects of slot length, location of feed patch, and width and length of feed patch on the antenna performance are examined. A prototype antenna with optimized parameters for 5.8 GHz band is fabricated on an FR4 substrate and tested experimentally to verify the results of this study. The experimental results show that the frequency band for a VSWR < 3 ranges 5.72-6.13 GHz (bandwidth 410 MHz), and it corresponds fairly well with the simulated band 5.64-5.97 GHz (bandwidth 330 MHz). The fabricated antenna shows good radiation performance such as maximum power density in both directions normal to the slot plane, low cross-polarization level of < -20 dB, and realized gain > 0 dBi within the frequency band.

Near-Isotropic Tag Antenna in UHF band Using Inductively Coupled Feeding (유도 결합 구조를 응용한 UHF 대역 Near-Isotropic 태그 안테나)

  • Ahn, Jun-Oh;Jang, Hyung-Min;Moon, Hyo-Sang;Lee, Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.12 s.115
    • /
    • pp.1240-1248
    • /
    • 2006
  • This paper presents an UHF band(911 MHz) RFID tag antenna which has near-isotropic radiation pattern and easy conjugate impedance matching characteristics to any commercial chips of usual practice through the application of an inductively-coupled feeding. The proposed antenna of compact size $40{\times}46mm\;(0.12{\times}0.14{\lambda})$ has, at normal incidence, the maximum RCS of $-18.5dBm^2$ and the 3 dB RCS bandwidth of 9 MHz(1 %) in case of short chip load. It has the maximum and minimum RCS' of $-16.9dBm^2\;and\;-21.4dBm^2$ depending on the incident angles. The difference of about 4.5 dB is relatively small compared with that (about 70 dB) of a pure dipole antenna. The designed antenna has been fabricated and its RCS' have been measured varying the angles of incidence. The measured RCS' have been found to have good agreement with the simulated ones.

Development of the EM Wave Absorber for Preventing RFID Reader Interference in UHF band (UHF대역 RFID 리더 간섭방지용 전파흡수체 개발)

  • Park, Soo-Hoon;Choi, Chang-Mook;Song, Young-Man;Kim, Dong-Il;Jung, Ji-Won;Kim, Ki-Man
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.349-353
    • /
    • 2008
  • In this paper, the EM wave absorber was designed and fabricated for preventing Reader Interference of RFID communication system in UHF band We fabricated several samples in different composition ratios of Amorphous and CPE(Chlorinated Polyethylene). Absorption abilities were simulated in accordance with different thicknesses of the prepared absorbers and changed complex relative permittivity and permeability due to composition ratio. The mixing ratio of Amorphous and CPE was searched as 80 : 20 wt.% by experiments and simulation. Then the EM wave absorber was fabricated and tested using the simulated data. As a result, the developed EM wave absorber has a thickness of 4 mm and absorption ability was over 20 dB in frequency range of $860\;MHz{\sim}960\;MHz$. Therefore, it was confirmed that the developed absorber can be used for suppressing RFID reader interference in UHF band.