• Title/Summary/Keyword: REPRODUCTION

검색결과 5,455건 처리시간 0.032초

국내 코로나바이러스감염증-19의 감염재생산수 추정 (Estimation of Reproduction Number for COVID-19 in Korea)

  • 정재웅;권혁무;홍성훈;이민구
    • 품질경영학회지
    • /
    • 제48권3호
    • /
    • pp.493-510
    • /
    • 2020
  • Purpose: As of July 31, there were 14,336 confirmed cases of COVID-19 in South Korea, including 301 deaths. Since the daily confirmed number of cases hit 909 on February 29, the spread of the disease had gradually decreased due to the active implementation of preventive control interventions, and the daily confirmed number had finally recorded a single digit on April 19. Since May, however, the disease has re-emerged and retaining after June. In order to eradicate the disease, it is necessary to suggest suitable forward preventive strategies by predicting future infectivity of the disease based on the cases so far. Therefore, in this study, we aim to evaluate the transmission potential of the disease in early phases by estimating basic reproduction number and assess the preventive control measures through effective reproduction number. Methods: We used publicly available cases and deaths data regarding COVID-19 in South Korea as of July 31. Using ensemble model integrated stochastic linear birth model and deterministic linear growth model, the basic reproduction number and the effective reproduction number were estimated. Results: Estimated basic reproduction number is 3.1 (95% CI: 3.0-3.2). Effective reproduction number was the highest with 7 on February 15, decreased as of April 20. Since then, the value is gradually increased to more than unity. Conclusion: Preventive policy such as wearing a mask and physical distancing campaigns in the early phase of the outbreak was fairly implemented. However, the infection potential increased due to weakening government policy on May 6. Our results suggest that it seems necessary to implement a stronger policy than the current level.

The optimal balance between sexual and asexual reproduction in variable environments: a systematic review

  • Yang, Yun Young;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • 제40권2호
    • /
    • pp.89-106
    • /
    • 2016
  • Many plant species have two modes of reproduction: sexual and asexual. Both modes of reproduction have often been viewed as adaptations to temporally or spatially variable environments. The plant should adjust partitioning to match changes in the estimated success of the two reproductive modes. Perennial plants showed that favorable habitats in soil nutrients or water content tend to promote clonal growth over sexual reproduction. In contrast, under high light-quantity conditions, clonal plants tend to allocate more biomass to sexual reproduction and less to clonal propagation. On the other hand, plants with chasmogamous and cleistogamous flowers provides with a greater tendency of the opportunity to ensure some seed set in any stressful environmental conditions such as low light, low soil nutrients, or low soil moisture. It is considered that vegetative reproduction has high competitive ability and is the major means to expand established population of perennial plants, whereas cleistogamous reproduction is insurance to persist in stressful sites due to being strong. Chasmogamous reproduction mainly enhances established and new population. Therefore, the functions of sexual and asexual propagules of perennial or annual plants differ from each other. These traits of propagule thus determine its success at a particular region of any environmental gradients. Eventually, if environmental resources or stress levels change in either space or time, species composition will probably also change. The reason based on which the plants differ with respect to favored reproduction modes in each environmental condition, may be involved in their specific realized niche.

녹조류 청각의 생식방법을 이용한 인공종묘생산 (Artificial Seed Production Using the Reproduction Methods in Codium fragile (Chlorophyta))

  • 황은경;백재민;박찬선
    • 한국수산과학회지
    • /
    • 제38권3호
    • /
    • pp.164-171
    • /
    • 2005
  • Codium fragile (Suringar) Hariot, an edible green alga is farmed in Korea by natural blooming zygotes attachment. Experiments were conducted to reveal the conditions for artificial seed production of C. fragile by sexual and asexual reproduction. Growth was compared between zygotes attachment (sexual reproduction) and isolated utricles with medullary filaments (asexual reproduction). Zygotes and isolated utricles with medullary filaments were cultured under different light conditions (10, 20, 40, 60 and $100\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and temperatures (5, 10, 15, 20 and $25^{\circ}C$) under 16:8LD. Maximum growth of zygote was $261.3{\pm}21.0\;{\mu}m$ under $15^{\circ}C$ and $20\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ after 13 days culture. Maximum regeneration of isolated medullary filament was $8.1{\pm}1.7\;mm$ per one isolated utricle under $20^{\circ}C$ and $100\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ after 15 days culture. After intermediate culture during two months in the field, morphogenesis occurred in both sexual and asexual reproduction, and growth of young thalli was not significantly different (p>0.05) between the both reproduction methods. Even though seed production of C. fragile is possible in both sexual and asexual reproduction, the mass artificial seed production of asexual reproduction is much more effective than that of sexual reproduction that is too much affected by maturity.

Red, Green, Blue CCFL을 이용한 Backlight Unit 개발 (Development of Backlight Unit by using Red, Green, Blue CCFL)

  • 양승수;송영기;김서윤;이정열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.414-415
    • /
    • 2006
  • At present, Characteristic of high color reproduction for LCD products needed in Display market. Therefore, The improving methods of high color reproduction are alteration of color Filter or Red, Green, Blue phosphor alteration of CCFL. But High color reproduction phosphor is short life time as compared with conventional phosphor. In this experiment, by using split the Red, Green, Blue CCFL with high color reproduction phosphor instead of conventional high color reproduction CCFL. We knew that the high color reproduction RGB split CCFL BLU has same spectrum data and chromaticity, but has long life time as manufacturing RGB split CCFL and reduce chromaticity shift following long time discharge as compared with conventional high color reproduction CCFL.

  • PDF

Mitochondria in reproduction

  • Min-Hee Kang;Yu Jin Kim;Jae Ho Lee
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제50권1호
    • /
    • pp.1-11
    • /
    • 2023
  • In reproduction, mitochondria produce bioenergy, help to synthesize biomolecules, and support the ovaries, oogenesis, and preimplantation embryos, thereby facilitating healthy live births. However, the regulatory mechanism of mitochondria in oocytes and embryos during oogenesis and embryo development has not been clearly elucidated. The functional activity of mitochondria is crucial for determining the quality of oocytes and embryos; therefore, the underlying mechanism must be better understood. In this review, we summarize the specific role of mitochondria in reproduction in oocytes and embryos. We also briefly discuss the recovery of mitochondrial function in gametes and zygotes. First, we introduce the general characteristics of mitochondria in cells, including their roles in adenosine triphosphate and reactive oxygen species production, calcium homeostasis, and programmed cell death. Second, we present the unique characteristics of mitochondria in female reproduction, covering the bottleneck theory, mitochondrial shape, and mitochondrial metabolic pathways during oogenesis and preimplantation embryo development. Mitochondrial dysfunction is associated with ovarian aging, a diminished ovarian reserve, a poor ovarian response, and several reproduction problems in gametes and zygotes, such as aneuploidy and genetic disorders. Finally, we briefly describe which factors are involved in mitochondrial dysfunction and how mitochondrial function can be recovered in reproduction. We hope to provide a new viewpoint regarding factors that can overcome mitochondrial dysfunction in the field of reproductive medicine.