• Title/Summary/Keyword: RELATIVE MOMENTUM

Search Result 72, Processing Time 0.018 seconds

Internal Changes and Countermeasure for Performance Improvement by Separation of Prescribing and Dispensing Practice in Health Center (의약분업(醫藥分業) 실시(實施)에 따른 보건소(保健所)의 내부변화(內部變化)와 업무개선방안(業務改善方案))

  • Jeong, Myeong-Sun;Kam, Sin;Kim, Tae-Woong
    • Journal of agricultural medicine and community health
    • /
    • v.26 no.1
    • /
    • pp.19-35
    • /
    • 2001
  • This study was conducted to investigate the internal changes and the countermeasure for performance improvement by Separation of Prescribing and Dispensing Practice (SPDP) in Health Center. Data were collected from two sources: Performance report before and after SPDP of 25 Health Centers in Kyongsangbuk-do and 6 Health Centers in Daegu-City and self-administerd questionnaire survey of 221 officials at health center. The results of this study were summarized as follows: Twenty-four health centers(77.4%) of 31 health centers took convenience measures for medical treatment of citizens and convenience measures were getting map of pharmacy, improvement of health center interior, introduction of order communication system in order. After the SPDP in health centers, 19.4% of health centers increased doctors and 25.8% decreased pharmacists. 58.1% of health centers showed that number of medical treatments were decreased. 96.4%, 80.6% 80.6% 96.7% of health centers showed that number of prescriptions, total medical treatment expenses, amounts paid by the insureds and the expenses to purchase drugs, respectively, were decreased. More than fifty percent(54.2%) of health centers responded that the relative importance of health works increased compared to medical treatments after the SPDP, and number of patients decreased compared to those in before the SPDP. And there was a drastic reduction in number of prescriptions, total medical treatment expenses, amounts paid by insureds, the expenses to purchase drugs after the SPDP. Above fifty percent(57.6%) of officers at health center responded that the function of medical treatment should be reduced after the SPDP. Fields requested improvement in health centers were 'development of heath works contents'(62.4%), 'rearrangement of health center personnel'(51.6%), 'priority setting for health works'(48.4%), 'restructuring the organization'(36.2%), 'quality impro­vement for medical services'(32.1%), 'replaning the budgets'(23.1%) in order. And to better the image of health centers, health center officers replied that 'health information management'(60.7%), 'public relations for health center'(15.8%), 'kindness of health center officers'(15.3%) were necessary in order. Health center officers suggested that 'vaccination program', 'health promotion', 'maternal and children health', 'communicable disease management', 'community health planning' were relatively important works, in order, performed by health center after SPDP. In the future, medical services in health centers should be cut down with a momentum of the SPDP so that health centers might reestablish their functions and roles as public health organizations, but quality of medical services must be improved. Also health centers should pay attention to residents for improving health through 'vaccination program', 'health promotion', 'mother-children health', 'acute and chronic communicable disease management', 'community health planning', 'oral health', 'chronic degenerative disease management', etc. And there should be a differentiation of relative importance between health promotion services and medical treatment services by character of areas(metropolitan, city, county).

  • PDF

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.