• 제목/요약/키워드: RECYCLE

검색결과 1,264건 처리시간 0.026초

목질 재료의 자기가수분해 및 효소당화에 관한 연구 (Ⅲ) - Cellulase 효소의 회수 및 재사용 - (Autohydrolysis and Enzymatic Saccharification of Lignocellulosic Materials(III) - Recycling and Reutilization of Cellulase Enzyme -)

  • 조남석
    • Journal of the Korean Wood Science and Technology
    • /
    • 제17권3호
    • /
    • pp.45-51
    • /
    • 1989
  • A major problem in the enzymatic hydrolysis of lignocellulosic substrates is the very strong bonding of cellulase to lignin and even cellulose in the hydrolysis residues. This phenomenon inhibits recycle of the cellulase which is a major expense of the enzymatic hydrolysis process. In this paper, autohydrolyzed wood was delignified by two-stage with a 0.3% Na OH extraction and oxygen-alkali bleaching and was subjected to enzymatic hydrolysis with cellulase. Also, an improved almost quantitative recycle process of cellulase enzyme was discussed. In enzyme recovery by affinity method. the first recycling showed relatively high hydrolysis rate of 97.4%. Even at the third recycle. hydrolysis rate was 86.7 percents. In the case of cellulase recovery by ultrafiltration method, first 2 recycling treatments resulted very high hydrolysis rate(97.0-97.7%). Even the third recycling showed about 94.2%. Authoydrolysis of oak wood followed by 2-stage delignification with alkali and oxygen-alkali produced a substrate for enzymatic hydrolysis that allowed almost quantitative recycle of cellulase.

  • PDF

Membrane Cell Recycle Fermentor에 의한 에탄올 연속 발효 (Continuous Ethanol Fermentation Using Membrane Cell Recycle Fermentor)

  • 김태석;이석훈;손석민;권윤중;변유량
    • 한국미생물·생명공학회지
    • /
    • 제19권4호
    • /
    • pp.419-427
    • /
    • 1991
  • 에탄올의 발효 생산성을 높이기 위해서는 발효조의 균체농도를 높여 고농도의 배양을 해야하며 또한 에탄올에 의한 저해 작용을 감소시켜 비생산성을 향상시키기 위해서는 발효액 중에 축적되는 에탄올을 배출 시킬 필요가 있다. 이와 같은 목적으로 본 연구에서는 고분자 hollow fiber membrane, ceramic filter를 이용하여 가장 중요한 조작 변수인 희석율과 bleed stream ratio가 에탄올 생산성에 미치는 영향 및 조작의 문제점과 장기 조업 가능성을 검토하였다.

  • PDF

2단 혐기성소화조의 슬러지 반송율 변화를 통한 Bio-Gas 생산 증대 (The Improvement of Bio-gas Production through the Change of Sludge-Recycle Ratio with Two-Stage Anaerobic Digestion)

  • 권구호;이태우;정용준;민경석
    • 한국환경과학회지
    • /
    • 제23권6호
    • /
    • pp.1061-1066
    • /
    • 2014
  • This study has cross checked the change of internal sludge-recycle in Anaerobic-Digestion, and researched about not only the improvement of Bio-gas production from the digested sludge but also the efficient method of sludge minimization. Ultimate object of the study is to reduce the amount of sludge by the improved efficiency of contact with the organic-matter and the microbes in Anaerobic-Digestion. The sludge-recycle fluidized sludge layer and raised the activity of the sludge, the optimal sludge-recycle ratio, VS and COD removal ratio were 1,000%, 28.2% and 27.7%, respectively. Through these results of this study, it may be of use to treat waste sludge by the sludge-recycle ratio in terms of minimization and circulation of resources.

MBR공정에서 내부 반송비에 따른 생물대사성분의 거동 (Behavior of Soluble Microbial Products by the Internal Recycle Rate in MBR Process)

  • 이원배;차기철;정태영;김동진;유익근
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.602-608
    • /
    • 2005
  • A laboratory-scale experiment was conducted to investigate control of soluble microbial products (SMP) by the internal recycle rate in the submerged membrane separation activated sludge process. The internal recycle rate of the reactor RUN 1 and RUN 2 were 100 % and 200 %, respectively. SMP concentration was rapidly accumulated in the reactor (RUN 1). The variation of accumulated SMP concentration was related to the denitrification rate at the beginning experiment however SMP concentration decreased without correlatively to the denitrification rate during long operation time. The microbial kinetic model was rapidly presented in the both microbial growth and extinction in the reactor (RUN 1). In the SMP kinetic model, Internal recycle rate is the lower, value of UAP and BAP which SMP matter were presented low. The study about development of kinetic model is relatively well adjusted to the experiment exception SMP. In the future, SMP formation equation must be thought that continually research is necessary.

2단 혐기성소화공정에서 반송변화를 통한 Bio-gas 생산량 증대 및 감량화 (Change of Sludge-Recycle Ratio for the Bio-gas Production Improvement and Minimization with Two-Stage Anaerobic Digestion)

  • 이태우;양해영;도중호
    • 한국산업융합학회 논문집
    • /
    • 제15권3호
    • /
    • pp.83-86
    • /
    • 2012
  • This study have cross checked the change of internal sludge-recycle in Full-scale Anaerobic-Digestion, and researched about not only the improvement of Bio-gas production from the digested sludge but also the efficient method of sludge minimization. Ultimate aim of the study is to reduce the amount of sludge by the improved efficiency of contact with the organic-matter and the microbes in Anaerobic-Digestion. The sludge-recycle fluidized sludge layer and raised the activity of the sludge, The sludge-recycle ratio of optimum was 500%, VS and COD removal ratio respectively appeared with 67.8% and 70.4%. Through these result of this study, it may be positive view to treat waste sludge by the sludge-recycle ratio in terms of minimization and circulation of resources.

Improvement of Hydrocarbon Recovery by Two-Stage Cell-Recycle Extraction in the Cultivation of Botryococcus braunii

  • An, Jin-Young;Sim, Sang-Jun;Kim, Byung-Woo;Lee, Jin-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.932-937
    • /
    • 2004
  • In situ extraction by organic solvent was studied in order to improve the recovery yield of hydrocarbon from the culture of Botryococcus braunii, a green colonial microalga. When the solvent mixture of octanol as an extractive solvent and n-octane as a biocompatible solvent was added to a two-phase column, the algal growth was seriously inhibited, even at a low concentration of polar octanol. Therefore, a two-stage cell-recycle extraction process was proposed to improve the contact area between the organic phase and the aqueous phase. The hydrocarbon recovery with in situ cell-recycle extraction showed a three-fold increase (57% of cell) in yield over that with two-phase extraction. In addition, over 60% of the hydrocarbon could be recovered without serious cell damage by downstream separation when this process was applied to the culture broth after batch fermentation.

기포탑 및 막 재순환 생물반응기에서의 Saccharomycopsis lipolytica에 의한 구연산 생산 (Citric Acid Production by Succharomycopsis lipolytica in Air-lift and Membrane Recycle Bioreactors)

  • 조대철;정봉현;장호남
    • 한국미생물·생명공학회지
    • /
    • 제17권6호
    • /
    • pp.624-628
    • /
    • 1989
  • A study on the citric acid production using Saccharomycopsis lipolytica (NRRL Y7576) was carried out in shake-flasks, air-lift and membrane recycle bioreactors. The cells entrapped in Ca-alginate beads were used in shake-flasks and air-lift reactor. Repeated batch fermentation in shake-flasks was successfully performed for 34 days and resulted in a yield of 54%. Increased yield (63%) was obtained in the air-lift reactor operation using nitrogen deficient medium (NDM). In the membrane recycle bioreactor operation, the maximal dry cell mass concentration was 39 g/1 at a dilution rate of 0.02 h$^{-1}$ and the yield with NDM was higher than that with growth medium. In addition, the yield and volumetric productivity with pure oxygen supply were greatly improved compared with those with air supply.

  • PDF

Production of Lactic Acid from Cheese Whey by Repeated Batch and Continuous Cultures

  • Kim, Hyang-Ok;Kim, Jin-Nam;Wee, Young-Jung;Ryu, Hwa-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.319-323
    • /
    • 2005
  • This study is concerned with development of efficient culture methods for lactic acid fermentation of Lactobacillus sp. RKY2. The cell-recycle repeated batch fermentation using cheese whey and corn steep liquor as raw materials was tried in order to further enhance the productivity of lactic acid. In addition, fermentation efficiencies could be considerably enhanced by cell-recycle continuous culture. Through the cell-recycle repeated batch fermentation, lactic acid productivity was maximized to 6.34 $g/L{\cdot}h,$ which corresponded to 6.2 times higher value than that of the batch fermentation. During the cell-recycle continuous fermentation, the last dry cell weight at the end of fermentation could be increased to 25.3 g/L.

  • PDF

다단층 부착성장 공법($A^2/O$향)에서 순환비에 따른 질소제거 (Nitrogen Removal in the Multi-stage Bed Attached Growth Process of $A^2/O$ System with Interanal Recycle Ratio)

  • 최규철;윤용수;정일현
    • 환경위생공학
    • /
    • 제12권3호
    • /
    • pp.95-102
    • /
    • 1997
  • The process which can stabilize water quality of treatment and improve nitrogen removal rate under the condition of high organic loading was developed by charging fibrous HBC media to single sludge nitrification-denitrification process. This process was operated easier, minimized the treatment cost, and shortened the retention time. To improve T-N removal rate, a part of nitrifing liquid at aerobic zone was recycled to anoxic zone by approximate internal recycle ratio. The experimental results are as follows ; T-N removal efficiency in the organic volumetric loading 0.14-0.19 kg/COD/m$^{3}$·d was obtained asmaxium of 85% at internal recycle ratio 2.5 and in more ratio than this it was decreased. Organic removal efficiency was about 91% under the overall experimental conditions and not influenced by recycle ratio.

  • PDF

폐콘크리트계 미분말의 소성조건에따른 수화성 회복 (Recovering Hydration Performance of Cementitious Powder by Concret Waste according to Burning Temperature)

  • 강태훈;정민수;안재철;강병희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.81-87
    • /
    • 2003
  • The purpose of this study is the development of a recycling process to recover the hydrated ability of cement hydrate which accounts for a large proportion of cementitious powder by concrete waste in order to recycle cementitious powder by concrete waste as recycle cement. Therefore, after having theoretical consideration based on the properties of high-heated concrete, we consider the properties of hydration of cementitious powder in hardened mortar under various temperature conditions. As a result of experiment, it is revealed that an effective development of recycling cement is possible since the cementitious powder by concrete waste recovers a hydraulic property during burning at $600^{\circ}C$ or $700^{\circ}C$. And it is shown that the fluidity of mortar decreases rapidly as the burning temperature of recycle cement increases. however, the improved effect of fluidity is predominant if adding the additive such as fly-ash or blast furnace slag.

  • PDF