• Title/Summary/Keyword: REBOUND

Search Result 414, Processing Time 0.021 seconds

Physical and Mechanical Properties on Ipseok-dae Columnar Joints of Mt. Mudeung National Park (무등산국립공원 입석대 주상절리대에 대한 물리역학적 특성)

  • Ko, Chin-Surk;Kim, Maruchan;Noh, Jeongdu;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.383-392
    • /
    • 2016
  • This study is to evaluate the physical and mechanical properties on the Ipseok-dae columnar joints of Mt. Mudeung National Park. For these purposes, physical and mechanical properties as well as discontinuity property on the Mudeungsan tuff, measurement of vibration and local meteorology around columnar joints, and ground deformation by self-weight of columnar joints were examined. For the physical and mechanical properties, average values were respectively 0.65% for porosity, 2.69 for specific gravity, 2.68 g/cm3 for density, and 2411 m/s for primary velocity, 323 MPa for uniaxial compressive strength, 81 GPa Young's modulus, and 0.25 for Poisson's ratio. For the joint shear test, average values were respectively 3.15 GPa/m for normal stiffness, 0.38 GPa/m for shear stiffness, 0.50 MPa for cohesion, and 35° for internal friction angle. The JRC standard and JRC chart was in the range of 4~6, and 1~1.5, respectively. The rebound value Q of silver schmidt hammer was 57 (≒ 90 MPa). It corresponds 20% of the uniaxial compressive strength of intact rock. The maximum vibration value around the Ipseok=dae columnar joints was in the range of 0.57 PPV (mm/s)~2.35 PPV (mm/s). The local meteorology of surface temperature, air temperature, humidity, and wind on and around columnar joints appeared to have been greatly influenced the weather on the day of measurement. For the numerical analysis of ground deformation due to its self-weight of the Ipseok-dae columnar joints, the maximum displacement of the right ground shows when the ground distance is approximately 2 m, while drastically decreased by 2~4 m, thereafter was insignificant. The maximum displacement of the middle ground shows when the ground distance is approximately 0~2 m, while drastically decreased by 3~10 m, thereafter was insignificant. The maximum displacement of the left ground shows when the ground distance is approximately 5~6 m, while drastically decreased by 6~10 m, thereafter was insignificant.

Changes in the Titer of Tooth Root Antibodies Accompanying Root Resorption Associated with Orthodontic Tooth Movement (치아이동시 치근 흡수에 따른 치근항체의 역가 변화)

  • Park, Soo-Byung;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.24 no.2
    • /
    • pp.303-317
    • /
    • 1994
  • This study was designed to measure the changes in the titer of tooth root antibodies accompanying root resorption associated with orthodontic tooth movement in dogs to explore a role of the specific immune response in root resorption during orthodontic tooth movement. Five adult mongrel dogs, 2 years of age, were used in the study. Six lower incisors were extracted as sources of homologous antigen in the dogs. Tooth root antigen preparations were made from a 6M Guanidine-HCl-10% EDTA(pH5.0) extract of these root dentins. Root resorption was elicited by intrusion of six maxillary incisors with 200-250gm intrusive force. In 9th week, resorbing six maxillary anterior teeth were extracted. Serum samples were taken from each dog prior to intrusion and weekly for 11 consecutive weeks. Serum autoantibody titers were determined with an enzyme-linked immunosorbent assay. As controls for antibody specificity, sera which were previously incubated with tooth root antigen as well as sera to an unrelated bacterial antigen (Porphyromonas gingivalis 33277) for 3 hours at 25 were measured in all runs. Root resorption was monitored monthly using occlusal radiographs. And then root resorption patterns were observed with a zoom stereo microscope (Model SZH-121, Olympus optical Co. Ltd.). Incisors did not show clear radiographic evidence of significant and progressive root resorption, but periodontal ligament space had widened. But root resorption was observed on the apical regions of the maxillary incisors with a zoom stereo microscope. Teeth showed the shallow depression generally accompanying deep resorption. These demonstrate a slight tendency for an immediate decrease followed by rebound to levels above the pre-treatment baseline. A peak titer of autoantibody to dentin antigen occurred on day 28, then steadily decreased during the 9th week period as the roots resorbed and then rapidly spiked in animals when the resorbing teeth were extracted. When sera is incubated with tooth root antigen, serum activity in the ELISA was almost absent. This is because serum activity in the ELISA could be removed by absorption of the serum with dog dentin antigen. Serum ELISA activity to the unrelated bacterial antigen remained essentially unchanged in all animals throughout the experimental period. When the time course of changes in autoantibody to homologous tooth root antigen prepatration and unrelated bacterial antigen was compared, no significant differences were found(${\alpha}=0.05$). In general, the overall pattern of changes in autoantibody was similar to the two antigens. These findings suggest the possibility that these immunologic changes precede a significant development of root resorption lesions rather than merely reflecting their presence. Therefore, this suggests that the changes of antibody levels may have some predictive value for root resorption.

  • PDF

A Research on the Special Characteristics of the Changes of the Vegetations in the World Cup Park Landfill Slope District (월드컵공원 사면지구 식생현황 및 변화 특성 연구)

  • Han, Bong-Ho;Park, Seok-Cheol;Choi, Han-Byeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.4
    • /
    • pp.1-15
    • /
    • 2023
  • This research intended to reveal the special characteristics of the vegetation structure and the tendency of change of -landfill slope districts, which are reclaimed land, through an investigationsinto the presently existent vegetation and plant community structure of the World Cup Park landfill slope district. For the analysis of changes in vegetation, this study compared the results of field surveys in 1999, 2003, 2005, 2007, 2008, 2012, 2016, and 2021. For the investigation into the plant community structure, a field investigation was carried out in 2021 with six fixed investigation districts designated in 1999 as subjects. To analyze the change in the plant community structure, the past data on the population, the number of the species, and the species diversity by the layer in 2021 were compared and analyzed in the landfill slope district, which is reclaimed land. The changes of the vegetation distribution and the power had been affected by typhoons (Kompasu). Above the plantation foundation, which had been dry and poor, Salix koreensis, marsh woody plants that had formed the community, decreased greatly. The Robinia pseudoacacia community, after the typhoon in 2010, decreased in the number of species and population. Afterward, it showed a tendency to rebound. Regarding the Ailanthus altissima-Robinia pseudoacacia-Paulownia tomentosa community, the number of the species and the population had shown a change similar to the Robinia pseudoacacia community. The Paulownia tomentosa and the Ailanthus altissima have been culled. The slope was predicted as a Future Robinia pseudoacacia forest. The Salix pseudolasiogyne community has been transitioning to a Robinia pseudoacacia forest. Only some enumeration districts, the Robinia pseudoacacia forests and the Salix pseudolasiogyne, had been growing. However, most had been in been declining. It was predicted that this community will be maintained as a Robinia pseudoacacia forest in the future. As these vegetation communities are the representative vegetation of the landfill slope districts, which is reclaimed land, there is a need to understand the ecosystem changes of the community through continuous monitoring. The results of this research can be utilized as a basic material for the vegetation restoration of reclaimed land.

A Study on Pullout-Resistance Increase in Soil Nailing due to Pressurized Grouting (가압 그라우팅 쏘일네일링의 인발저항력 증가 원인에 관한 연구)

  • Jeong, Kyeong-Han;Park, Sung-Won;Choi, Hang-Seok;Lee, Chung-Won;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.101-114
    • /
    • 2008
  • Pressurized grouting is a common technique in geotechnical engineering applications to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressurized grouting has been applied to a soil-nailing system which is widely used to improve slope stability. Because interaction between pressurized grouting paste and adjacent ground mass is complicated and difficult to analyze, the soil-nailing design has been empirically performed in most geotechnical applications. The purpose of this study is to analyze the ground behavior induced by pressurized grouting paste with the aid of laboratory model tests. The laboratory tests are carried out for four kinds of granitic residual soils. When injecting pressure is applied to grout, the pressure measured in the adjacent ground initially increases for a while, which behaves in the way of the membrane model. With the lapse of time, the pressure in the adjacent ground decreases down to a value of residual stress because a portion of water in the grouting paste seeps into the adjacent ground. The seepage can be indicated by the fact that the ratio of water/cement in the grouting paste has decreased from a initial value of 50% to around 30% during the test. The reduction of the W/C ratio should cause to harden the grouting paste and increase the stiffness of it, which restricts the rebound of out-moved ground into the original position, and thus increase the in-situ stress by approximately 20% of the injecting pressures. The measured radial deformation of the ground under pressure is in good agreement with the expansion of a cylindrical cavity estimated by the cavity expansion theory. In-situ test revealed that the pullout resistance of a soil nailing with pressurized grouting is about 36% larger than that with regular grouting, caused by grout radius increase, residual stress effect, and/or roughness increase.