• Title/Summary/Keyword: RE (Renewable Energy)

Search Result 70, Processing Time 0.023 seconds

Willingness-to-pay for the Use of Renewable Energy by Experts (신재생에너지분야 전문가의 지불의사액 조사 연구)

  • Lim, So-Young;Heo, Eun-Nyeong
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.44-49
    • /
    • 2008
  • This study uses contingent valuation method (CVM) to elicit willingness to pay monthly for electricity or heating produced by renewable energy (RE). The experts who participated in the conference of the Korean Society for New and Renewable Energy in May of 2008 were asked to answer the questionnaires: how much would you be willing to pay monthly to receive electricity (or heating) generated by RE? We find some evidence that the respondents have higher willingness to pay for RE electricity than RE heating even if the average electric bills were lower than the heating bills. The respondent who belongs to a large family and has a good opinion of RE tends to show high willingness to pay for both RE electricity and RE heating.

  • PDF

Characteristics and Limitations of Green Premium in the Korean RE100 System (한국 RE100 제도에서 녹색프리미엄의 특성 및 한계)

  • Yang, Wonchang;Lee, Jae-Seung
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.43-59
    • /
    • 2022
  • The green premium is the most important feature of Korea's RE100 system. Green premium has three characteristics. The first, the cost of implementation is lower than that of other means of implementation. The second, it is linked with the RPS system to keep the means of implementing the green premium low. Third, the funds raised by the green premium are used to supply renewable energy to compensate for the additionality that the green premium does not have. When the entire industrial sector's electricity consumption is converted to renewable energy, the implementation cost of the green premium is estimated to be 3,377.4 billion won, and the REC purchase is estimated to incur the implementation cost of 6,576.4 billion won, which is 3.5 trillion more than the green premium. It was analyzed that an additional implementation cost of KRW 100 million would occur. In addition, in the case of solar PPA, it was analyzed that additional implementation costs of KRW 13,375.7 billion to KRW 16,162.3 billion were incurred. It was estimated that the renewable energy that could be supplied to the green premium would at least be sufficient for companies exporting to the US and EU. In addition, it was analyzed that when the fund created as a green premium is used for renewable energy supply, about 30.7% of the renewable energy supply through PPA can be supplied. However, as ESG is emphasized, green premium can be criticized by green washing because there is no additionality. There is also a limit to responding to the EU's CBAM. Therefore, companies can use the green premium depending on the situation, but it is more advantageous to use PPA, etc. The government needs to sufficiently maintain the supply of renewable energy using the fund to maintain the green premium.

Building Energy Management System Coupling with Renewable Energy System

  • Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.34 no.9
    • /
    • pp.705-709
    • /
    • 2010
  • Buildings nowadays are increasingly expected to need higher and more economic performance requirements. Energy consumption in buildings accounts for over 30% of total energy use. The Building Energy Management System (BEMS) and renewable energy (RE) technologies are considered as a potential measure to improve energy efficiency and reduce use of grid-power. It is, however, a challenge to utilise the intermittent energy supply of RE in building energy systems. This paper presents an experimental study on a RE-embedded BEMS. A control algorithm for the RE-embedded BEMS was designed to maximise the utilisation of RE and eventually to reduce electrical utility bill. The proposed system is tested at a laboratorial chamber with an air conditioner, fan and heater. The contribution of RE in building energy system is discussed to this end.

Assessing the "Renewable Energy 2040" target: Roadblocks and recommendations for the Philippines

  • Gabis, Mary Grace V.
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.6 no.1
    • /
    • pp.35-44
    • /
    • 2020
  • In line with the goal of achieving a low carbon future, the Philippines made an aspirational target which aims to increase the total installed capacity coming from renewable energy (RE) to at least 20,000 MW by 2040. The country's RE sector has progressively advanced over the years following the enactment of its comprehensive RE Law in 2008. Among other RE technologies, solar achieved the highest installation growth from 2008 to 2018. The paper seeks to assess whether the Philippines' RE target by 2040 is achievable in terms of the current status and future outlook for RE. Major roadblocks that hamper RE development are identified and discussed, including some recommendations for policy-making and energy planning.

Analysis of Micro Energy Building Operation (Micro Energy Building 운영사례 분석)

  • Choi, Hyeong-Jin;Park, Si-Sam;Na, Sang-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.140.2-140.2
    • /
    • 2011
  • Renewable energy(RE) systems have difficulties in operating and management due to the intermittency of the energy generation. Stochastic supply profiles of RE creates problems for mechanical and electrical design in relation to the selection of technology types and capacities of RE to be installed. This paper presents an methodology of the feasibility assessment of RE-integrated energy systems on the basis of hourly demand/supply analysis tools. Also, this paper shows the feasibility and the usefulness of GS REMA(Renewable Energy Matching Analysis) and HOMER by comparing actual energy data.

  • PDF

RETScreen(R) Ground Source Heat Pump(GSHP) Application for Korea (RETScreen(R) 지중열 히트펌프 모듈 한국 적용에 관한 연구)

  • Naveed Ahmed T;Park Sanghyun;Lee Euijoon;Kim Byungseon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.678-683
    • /
    • 2005
  • Korea is utilizing geothermal resources mainly in the bathing and swimming facilities with very few applications for industrial processes or space heating. It is estimated that geothermal capacity and annual utilization are 36.2MWt and 761TJ/year as compared to global capacity and annual utilization of 15,145MWt and 190,699 TJ/year. RETScreen software is a user's friendly tool for analyzing the technical and financial pre-feasibility of potential Renewable Energy (RE) projects that promotes the use of RE applications through the capacity building of planners, decision-makers and industries for successful implementation of RE projects. Strong ties between Canada and Korean organizations such as Korean Solar Energy Society (KSES) and the Korea Institute of Energy Research (KIER) exist for knowledge transfer about RETScreen. In this paper, an overview of RETScreen and its ground source heat pump (GSHP) model with a practical example of an existing project of a community hall in Canada are described to illustrate effectiveness of RETScreenin the implementation of RE technologies. The same community hall project is then evaluated hypothetically considering its location at Kangnyng, Korea. The main objective is to demonstrate how RETScreen GSHP model can also be utilized effectively for GSHP applications in Korea.

  • PDF

A Study on Simplified Evaluation for Renewable Energy based Combination System in School - Considering the Size of Classroom and Capital Cost - (학교건물의 신·재생에너지기반 복합시스템 간이평가 기법 연구 - 학급규모와 투자비 중심으로 -)

  • Kim, Ji-Yeon
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.77-84
    • /
    • 2013
  • Schools are one of favorable public buildings for Renewable Energy(RE) systems due to site conditions and their energy demand profiles(e.g. daytime-based use of hot water and heating/cooling). Although the government encourages schools to be equipped with RE systems, the adoption of RE systems in existing energy supply systems faces technical and financial barriers. For example, when installing a RE-based combination system(RECS) to meet the energy demand at various school scales, identifying cost effective combination of capacities of the RECS is not trivial since it usually requires technically intensive work including detailed simulation and demand/supply analysis with extensive data. This kind of simulation-based approaches is hardly implementable in practice. To address this, a simpler and applicable decision-supporting method is suggested in this study. This paper presents a simplified model in support of decision-making for optimal capacities of RECS within given budget scales and schools sizes. The proposed model was derived from detailed simulation results and statistical data. Using this model, the optimal capacities of RECS can be induced from the number of classes in a school.

A Comparative Assessment of Hydrogen Facility Installation for Net-Zero Energy District Planning (제로에너지단지의 적정 수소 활용 규모 및 운용방식에 관한 연구)

  • Junoh Kim;Chulhee Kim;Soyeon Chu
    • New & Renewable Energy
    • /
    • v.19 no.3
    • /
    • pp.1-12
    • /
    • 2023
  • This study aims to evaluate the optimal size of the hydrogen facility to be installed in a zero-energy district in terms of load matching and facility efficiency. A mismatch between energy generation and consumption is a common occurrence in zero-energy districts. This mismatch adversely effects the energy grid. However, using an energy carrier such as hydrogen can solve this problem. To determine the optimal size of hydrogen fuel cells to be used on-site, simulation of hydrogen installation is required at both district-and building- levels. Each case had four operating schedules. Therefore, we evaluated eight scenarios in terms of load matching, heat loss, and facility operational efficiency. The results indicate that district-level installation of hydrogen facilities enables more efficient energy use. Additionally, based on the proposed model, we can calculate the optimal size of the hydrogen facility.

REC Distortion as a Quantitative Control Policy due to REC Depreciation (REC 명목가치 하락으로 인한 양적 통제장치로서의 RPS 왜곡)

  • Yu, Jongmin;Lee, Jaeseok
    • Environmental and Resource Economics Review
    • /
    • v.31 no.1
    • /
    • pp.51-83
    • /
    • 2022
  • Renewable Portfolio Standards (RPS), one of the most commonly adopted regulation for renewable energy expansion since 2012, has the obvious advantage of inducing competition in power generation source and alleviating the government's financial burden. However, the abuse of credit multipliers and the use of national Renewable Energy Credits (RECs) have resulted in the distortion of RPS as a quantitative control policy. Just as no face value 10 years ago can hold its real value, this paper highlights for the first time that 27.8% of total renewable obligations over the total RPS period were not actually met due to REC inflation and the consequent decline in the value of renewable energy generation. In addition, the distortion of face/real value of REC causes problems in interoperability with other government policies such as RE100 and Emission Trading System.

Optimal unidirectional grid tied hybrid power system for peak demand management

  • Vineetha, C.P.;Babu, C.A.
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.47-68
    • /
    • 2016
  • A well designed hybrid power system (HPS) can deliver electrical energy in a cost effective way. In this paper, model for HPS consisting of photo voltaic (PV) module and wind mill as renewable energy sources (RES) and solar lead acid battery as storage device connected to unidirectional grid is developed for peak demand reduction. Life time energy cost of the system is evaluated. One year hourly site condition and load pattern are taken into account for analysing the HPS. The optimal HPS is determined for least life time energy cost subject to the constraints like state of charge of the battery bank, dump load, renewable energy (RE) generation etc. Optimal solutions are also found out individually for PV module and wind mill. These three systems are compared to find out the most feasible combination. The results show that the HPS can deliver energy in an acceptable cost with reduced peak consumption from the grid. The proposed optimization algorithm is suitable for determining optimal HPS for desired location and load with least energy cost.