온톨로지가 대용량화되면서 온톨로지 시스템의 성능 향상을 위해 효율적인 추론이 중요해졌다. 본 논문에서는 DBMS 기반의 온톨로지 저장소에서 RDFS 포함관계 함의 규칙 (rdfs7 규칙과 rdfs9 규칙)과 OWL 역관계 규칙(owl:inverseOf)의 추론을 효율적으로 수행할 수 있는 방법으로서, DB 테이블에 대한 뷰(view)를 활용하는 방법을 소개한다. 추론 규칙을 뷰 정의로 대체하고 RDF 트리플을 구조화된 트리플 테이블에 저장하는 것으로 추론이 완료되며 대신 질의 처리과정에서는 그 뷰를 참조하면 된다. 이와 같이 뷰를 정의하는 것으로 추론을 대신함에 따라 추론에 소요되는 시간을 단축할 수 있고 트리플 저장소의 공간 효율성도 얻을 수 있다.
시맨틱 웹상에서 RDFS로 표현된 데이터의 사용 증가로 인하여, 대용량 데이터의 추론에 대한 많은 요구가 생겨나고 있다. 많은 연구자들은 대용량 온톨로지 추론을 수행하기 위해서 하둡과 같은 고가의 분산 프레임워크를 활용한다. 그러나, 적절한 사이즈의 RDFS 트리플 추론을 위해서는 굳이 고가의 분산 환경 시스템을 사용하지 않고 단일 머신에서도 논리적 프로그래밍을 이용하면 분산 환경과 유사한 추론 성능을 얻을 수 있다. 본 논문에서는 단일 머신에 논리적 프로그래밍 방식을 적용한 대용량 RDFS 추론 기법을 제안하였고 다중 머신을 기반으로 한 분산 환경 시스템과 비교하여 2억개 정도의 트리플에 대한 RDFS 추론 시스템을 적용한 경우 분산환경과 비슷한 성능을 보이는 것을 실험적으로 증명하였다. 효율적인 추론을 위해 온톨로지 모델을 세부적으로 분리한 메타데이터 구조와 대용량 트리플의 색인 방안을 제안하고 이를 위해서 전체 트리플을 하나의 모델로 로딩하는 것이 아니라 각각 온톨로지 추론 규칙에 따라 적절한 트리플 집합을 선택하였다. 또한 논리 프로그래밍이 제공하는 Unification 알고리즘 기반의 트리플 매칭, 검색, Conjunctive 질의어 처리 기반을 활용하는 온톨로지 추론 방식을 제안한다. 제안된 기법이 적용된 추론 엔진을 LUBM1500(트리플 수 2억개) 에 대해서 실험한 결과 166K/sec의 추론 성능을 얻었는데 이는 8개의 노드(8 코아/노드)환경에서 맵-리듀스로 수행한 WebPIE의 185K/sec의 추론 속도와 유사함을 실험적으로 증명하였다. 따라서 단일 머신에서 수행되는 본 연구 결과는 트리플의 수가 2억개 정도까지는 분산환경시스템을 활용하지 않고도 분산환경 시스템과 비교해서 비슷한 성능을 보이는 것을 확인할 수 있었다.
최근 인터넷과 디바이스의 발전으로 지식 정보의 양이 방대해 지면서 대용량 온톨로지를 이용한 추론 연구가 활발히 진행되고 있다. 일반적으로 트리플로 표현되는 빅데이터는 기계학습 프로그램이나 지식 공학자가 각 트리플의 신뢰도를 측정하여 제공한다. 하지만 수집된 데이터는 불확실한 데이터를 포함하고 있으며, 이러한 데이터를 추론하는 것은 불확실성을 내포한 추론 결과를 초래할 수 있다. 본 논문에서는 불확실성 문제를 해결하기 위해 수집된 데이터에 대한 신뢰의 정도를 나타내는 신뢰값(Confidence Value)를 이용한 RDFS 규칙 추론 방법에 대하여 설명하고, 메모리 기반의 분산 클러스터 프레임워크인 스파크(Spark)를 기반으로 데이터의 불확실성에 대한 고려를 하지 않는 기존의 추론 방법과 달리 신뢰값 계산에 대한 방법을 응용하여 RDFS 규칙을 통해 추론되는 새로운 데이터의 신뢰값을 계산하며, 계산된 신뢰값은 추론된 데이터에 대한 불확실성을 나타낸다. 제안하는 추론 방법의 성능을 검증하기 위해 온톨로지 추론과 검색 속도를 평가할 때 활용되는 공식 데이터인 LUBM을 대상으로 신뢰값을 추가하여 실험을 수행하였으며, 가장 큰 데이터인 LUBM3000을 수행하였을 때 1179초의 추론시간이 소요되었고, 초당 350K 트리플을 처리할 수 있는 성능을 보였다.
대용량 미디어 온톨로지를 이용하여 의미 있는 지능형 서비스를 제공하기 위해 기존의 Axiom 추론뿐만 아니라 다양한 추론을 활용하는 지식 확장이 요구되고 있다. 특히 시공간 정보는 인공지능 응용분야에서 중요하게 활용될 수 있고, 시공간 정보의 표현과 추론에 대한 중요도는 지속적으로 증가하고 있다. 따라서 본 논문에서는 공간 정보를 추론에 활용하기 위해서 공공 주소체계에 대한 LOD를 대용량 미디어 온톨로지에 추가하고, 이러한 대용량 데이터 처리를 위해 인메모리 기반의 분산 처리 프레임워크를 활용하는 공간 추론을 포함하는 RDFS 추론 시스템을 제안한다. 또한 추론을 통해 확장된 데이터를 포함하는 대용량 온톨로지 데이터를 대상으로 하는 분산 병렬 시공간 SPARQL 질의 처리 방법에 대해서 설명한다. 제안하는 시스템의 성능을 측정하기 온톨로지 추론과 질의 처리 벤치 마킹을 위한 LUBM과 BSBM 데이터셋을 대상으로 실험을 진행했다.
최근 스마트폰의 폭발적인 보급, IoT와 클라우드 컴퓨팅 기술의 고도화, 그리고 IoT 디바이스의 보편화로 대용량 스트리밍 센싱데이터가 출현하였다. 또한 이를 기반으로 데이터의 공유와 매쉬업 통해 새로운 데이터의 가치를 창출하기 위한 요구사항의 증대로 대용량 스트리밍 센싱데이터 환경에서 시맨틱웹 기술과의 접목에 관한 연구가 활발히 진행되고 있다. 하지만 데이터의 대용량성 스트리밍성으로 인해 새로운 지식을 도출하기 위한 지식 추론분야에서 많은 이슈들에 직면하고 있다. 이러한 배경하에, 본 논문에서는 IoT 환경에서 발생하는 대용량 스트리밍 센싱데이터를 시맨틱웹 기술로 처리하여 서비스하기 위해 RDFS 규칙기반 병렬추론 기법을 제시한다. 제안된 기법에서는 기존의 규칙추론 알고리즘인 Rete 알고리즘을 하둡프레임워크 맵리듀스를 통해 병렬로 수행하고, 공용 스토리지로서 하둡 데이터베이스인 HBase를 사용하여 데이터를 공유한다. 이를 위한 시스템을 구현하고, 대용량 스트리밍 센싱데이터인 기상청 AWS 관측데이터를 이용하여 제시된 기법에 대한 성능평가를 진행하고, 이를 입증한다.
근래에 들어 다양한 시멘틱 서비스를 위하여 기존의 지식을 바탕으로 새로운 지식을 고속으로 추론할 수 있는 대용량 온톨로지 추론 기법이 요구되고 있다. 이런 추세에 따라 대규모의 클러스터를 활용하는 하둡 및 Spark 프레임워크 기반의 온톨로지 추론 엔진 개발이 연구되고 있다. 또한, 기존의 CPU에 비해 많은 코어로 구성되어 있는 GPGPU를 활용하는 병렬 프로그래밍 방식도 온톨로지 추론에 활용되고 있다. 앞서 말한 두 가지 방식의 장점을 결합하여, 본 논문에서는 RDFS 대용량 온톨로지 데이터를 인-메모리 기반 프레임워크인 Spark를 통해 분산시키고 GPGPU를 이용하여 분산된 데이터를 고속 추론하는 방법을 제안한다. GPGPU를 통한 온톨로지 추론은 기존의 추론 방식보다 저비용으로 고속 추론을 수행하는 것이 가능하다. 또한 Spark 클러스터의 각 노드를 통하여 대용량 온톨로지 데이터에 대한 부하를 줄일 수 있다. 본 논문에서 제안하는 추론 엔진을 평가하기 위하여 LUBM10, 50, 100, 120에 대해 추론 속도를 실험하였고, 최대 데이터인 LUBM120(약 1백7십만 트리플, 2.1GB)의 실험 결과, 인-메모리(Spark) 추론 엔진 보다 7배 빠른 추론 성능을 보였다.
지식 서비스 시스템이 효과적인 서비스를 제공하기 위해서는, 명시된 지식을 바탕으로 새로운 지식을 추론 할 수 있어야 한다. 대부분 지식 서비스 시스템은 온톨로지로 지식을 표현한다. 실 세계의 지식 정보의 양은 점점 방대해지고 있으며, 따라서 대용량 온톨로지를 효과적으로 추론하는 기법이 요구되고 있다. 본 논문은 클라우드 컴퓨팅 환경을 기반으로 대용량 온톨로지를 RDFS수준으로 추론하기 위한 분산 테이블 조인 방법을 제안하고, 성능을 평가한다. 본 논문에서 제안하는 RDFS 추론은 분산 파일 시스템 환경에서 RDFS 메타 테이블을 기반으로 맵-리듀스를 적용한 방식과, 맵-리듀스를 사용하지 않고 클라우드 컴퓨터의 메모리만 사용한 방식에 초점을 맞추었다. 따라서 본 논문에서는 제안하는 각 기법에 대한 추론 시스템 구조와 RDFS 추론 규칙에 따른 메타 테이블 설계 및 추론 전략 알고리즘에 대해서 중점적으로 설명한다. 제안하는 기법의 효율성을 검증하기 위해 온톨로지 추론과 검색 속도를 평가하는 공식 데이터인 LUBM1000부터 LUBM6000을 대상으로 실험을 수행 하였다. 가장 큰 LUBM6000(8억 6천만 트리플)의 경우, 메타 테이블 기반의 RDFS 추론 기법은 전체 추론 시간이 13.75분(초당 1,042 트리플 추론) 소요된 반면, 클라우드 컴퓨터의 메모리를 적용한 방식은 7.24분(초당 1,979 트리플 추론)이 소모되어 약 2배정도 빠른 추론 속도를 보였다.
Due to the lack of digitally usable standards, it has been known to be difficult to handle the biological data. For example, the name of genes and proteins changes over time or has several synonyms indicating different entities. To cope with these problems, several communities, including the Gene Ontology Consortium and PubGene are making their efforts to move science toward the semantic web vision. Although some progress has been made, its expressivity is not sufficient for full-fledged ontological modeling and reasoning. This paper suggests a methodology for representing and extracting biological knowledge by using Web Ontology Language (OWL) as an extension of Resource Description Framework Schema (RDFS). Some benefits of our approach are: (1) to ensure extended sharing of biological meta data on the Web, and (2) to enrich additional expressivity and the semantics of RDFS+OWL.
RDF(Resource Description Framework)는 시맨틱 웹에서 메타 정보를 기술하는 온톨로지 언어로 많이 사용되고 있다. 온톨로지는 실세계에 대한 모델링을 기반으로 하기 때문에 끊임없이 갱신이 발생한다. 이런 갱신을 찾고 분석하는 일은 지식 관리 시스템에서 핵심이 된다. 기존의 RDF 모델에 대한 변경 탐지 기법들은 구조적 변경에 초점을 두었으나 RDFS 함의 규칙을 적용하여 좀 더 작은 크기의 변경 부분을 찾는 연구들이 소개되고 있다. 하지만 RDF 모델의 추론은 데이타 크기와 시간의 증가에 영향을 미친다. 본 논문에서는 RDFS 함의 규칙을 효율적으로 사용하는 변경 탐지 기법을 제안한다. 제안된 기법은 후방향 전진 추론 기반으로 모델 일부분에만 추론을 적용하여 변경 내용을 계산한다. 실제 사용하는 RDF 데이타들을 사용하여 기존의 변경 탐지 기법과의 비교 실험을 통해 성능을 향상시킬 수 있음을 보인다.
근래에 들어 풍부한 지식베이스를 구축하기 위한 대용량 RDFS 추론에 대한 관심이 높아지면서 기존의 단일 머신으로는 대용량 데이터의 추론 성능을 향상시키기에 한계가 있다. 그래서 분산 환경에서 의 RDFS 추론 엔진 개발이 활발히 연구되고 있다. 하지만 기존의 분산 환경 엔진은 실시간 처리가 불가능 하며 구현이 어렵고 반복 작업에 취약하다. 본 논문에서는 이러한 문제를 극복하기 위해 병렬 그래프 구조 를 사용한 인-메모리 분산 추론 엔진 구축 방법을 제안한다. 트리플 형태의 온톨로지는 기본적으로 그래프 구조를 가지고 있으므로 그래프 구조 기반의 추론 엔진을 설계하는 것이 직관적이다. 또한 그래프 구조를 활용하는 오퍼레이터를 활용하여 RDFS 추론 규칙을 구현함으로써 기존의 데이터 관점과 달리 그래프 구조의 관점에서 설계할 수 있다. 본 논문에서 제안한 추론 엔진을 평가하기 위해 LUBM1000(1억 3천 3백만 트리플, 17.9GB), LUBM3000(4억 1천 3백만 트리플, 54.3GB)에 대해 추론 속도를 실험을 하였으며 실 험결과, 비-인메모리 분산 추론 엔진보다 약 10배 정도 빠른 추론 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.