• Title/Summary/Keyword: RDFS parallel reasoning

Search Result 5, Processing Time 0.014 seconds

RDFS Rule based Parallel Reasoning Scheme for Large-Scale Streaming Sensor Data (대용량 스트리밍 센서데이터 환경에서 RDFS 규칙기반 병렬추론 기법)

  • Kwon, SoonHyun;Park, Youngtack
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.686-698
    • /
    • 2014
  • Recently, large-scale streaming sensor data have emerged due to explosive supply of smart phones, diffusion of IoT and Cloud computing technology, and generalization of IoT devices. Also, researches on combination of semantic web technology are being actively pushed forward by increasing of requirements for creating new value of data through data sharing and mash-up in large-scale environments. However, we are faced with big issues due to large-scale and streaming data in the inference field for creating a new knowledge. For this reason, we propose the RDFS rule based parallel reasoning scheme to service by processing large-scale streaming sensor data with the semantic web technology. In the proposed scheme, we run in parallel each job of Rete network algorithm, the existing rule inference algorithm and sharing data using the HBase, a hadoop database, as a public storage. To achieve this, we implement our system and evaluate performance through the AWS data of the weather center as large-scale streaming sensor data.

Distributed In-Memory based Large Scale RDFS Reasoning and Query Processing Engine for the Population of Temporal/Spatial Information of Media Ontology (미디어 온톨로지의 시공간 정보 확장을 위한 분산 인메모리 기반의 대용량 RDFS 추론 및 질의 처리 엔진)

  • Lee, Wan-Gon;Lee, Nam-Gee;Jeon, MyungJoong;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.43 no.9
    • /
    • pp.963-973
    • /
    • 2016
  • Providing a semantic knowledge system using media ontologies requires not only conventional axiom reasoning but also knowledge extension based on various types of reasoning. In particular, spatio-temporal information can be used in a variety of artificial intelligence applications and the importance of spatio-temporal reasoning and expression is continuously increasing. In this paper, we append the LOD data related to the public address system to large-scale media ontologies in order to utilize spatial inference in reasoning. We propose an RDFS/Spatial inference system by utilizing distributed memory-based framework for reasoning about large-scale ontologies annotated with spatial information. In addition, we describe a distributed spatio-temporal SPARQL parallel query processing method designed for large scale ontology data annotated with spatio-temporal information. In order to evaluate the performance of our system, we conducted experiments using LUBM and BSBM data sets for ontology reasoning and query processing benchmark.

Scalable Ontology Reasoning Using GPU Cluster Approach (GPU 클러스터 기반 대용량 온톨로지 추론)

  • Hong, JinYung;Jeon, MyungJoong;Park, YoungTack
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.61-70
    • /
    • 2016
  • In recent years, there has been a need for techniques for large-scale ontology inference in order to infer new knowledge from existing knowledge at a high speed, and for a diversity of semantic services. With the recent advances in distributed computing, developments of ontology inference engines have mostly been studied based on Hadoop or Spark frameworks on large clusters. Parallel programming techniques using GPGPU, which utilizes many cores when compared with CPU, is also used for ontology inference. In this paper, by combining the advantages of both techniques, we propose a new method for reasoning large RDFS ontology data using a Spark in-memory framework and inferencing distributed data at a high speed using GPGPU. Using GPGPU, ontology reasoning over high-capacity data can be performed as a low cost with higher efficiency over conventional inference methods. In addition, we show that GPGPU can reduce the data workload on each node through the Spark cluster. In order to evaluate our approach, we used LUBM ranging from 10 to 120. Our experimental results showed that our proposed reasoning engine performs 7 times faster than a conventional approach which uses a Spark in-memory inference engine.

Scalable RDFS Reasoning Using the Graph Structure of In-Memory based Parallel Computing (인메모리 기반 병렬 컴퓨팅 그래프 구조를 이용한 대용량 RDFS 추론)

  • Jeon, MyungJoong;So, ChiSeoung;Jagvaral, Batselem;Kim, KangPil;Kim, Jin;Hong, JinYoung;Park, YoungTack
    • Journal of KIISE
    • /
    • v.42 no.8
    • /
    • pp.998-1009
    • /
    • 2015
  • In recent years, there has been a growing interest in RDFS Inference to build a rich knowledge base. However, it is difficult to improve the inference performance with large data by using a single machine. Therefore, researchers are investigating the development of a RDFS inference engine for a distributed computing environment. However, the existing inference engines cannot process data in real-time, are difficult to implement, and are vulnerable to repetitive tasks. In order to overcome these problems, we propose a method to construct an in-memory distributed inference engine that uses a parallel graph structure. In general, the ontology based on a triple structure possesses a graph structure. Thus, it is intuitive to design a graph structure-based inference engine. Moreover, the RDFS inference rule can be implemented by utilizing the operator of the graph structure, and we can thus design the inference engine according to the graph structure, and not the structure of the data table. In this study, we evaluate the proposed inference engine by using the LUBM1000 and LUBM3000 data to test the speed of the inference. The results of our experiment indicate that the proposed in-memory distributed inference engine achieved a performance of about 10 times faster than an in-storage inference engine.

Distributed Assumption-Based Truth Maintenance System for Scalable Reasoning (대용량 추론을 위한 분산환경에서의 가정기반진리관리시스템)

  • Jagvaral, Batselem;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1115-1123
    • /
    • 2016
  • Assumption-based truth maintenance system (ATMS) is a tool that maintains the reasoning process of inference engine. It also supports non-monotonic reasoning based on dependency-directed backtracking. Bookkeeping all the reasoning processes allows it to quickly check and retract beliefs and efficiently provide solutions for problems with large search space. However, the amount of data has been exponentially grown recently, making it impossible to use a single machine for solving large-scale problems. The maintaining process for solving such problems can lead to high computation cost due to large memory overhead. To overcome this drawback, this paper presents an approach towards incrementally maintaining the reasoning process of inference engine on cluster using Spark. It maintains data dependencies such as assumption, label, environment and justification on a cluster of machines in parallel and efficiently updates changes in a large amount of inferred datasets. We deployed the proposed ATMS on a cluster with 5 machines, conducted OWL/RDFS reasoning over University benchmark data (LUBM) and evaluated our system in terms of its performance and functionalities such as assertion, explanation and retraction. In our experiments, the proposed system performed the operations in a reasonably short period of time for over 80GB inferred LUBM2000 dataset.