• Title/Summary/Keyword: RCS joint Shear strength

Search Result 9, Processing Time 0.03 seconds

Estimation Formula for Shear Strength of RCS Beam-Column Joint (RCS 보-기둥 접합부의 전단강도 산정식 평가)

  • Chang, Kug-Kwan;Jeon, Choong-Geun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • This study is on the shear strength of the internal joints of RCS composite structure consisting of reinforced concrete column and steel beam. As a newly structure system, the composite system has been developed to fully utilize the advantages of reinforced concrete column and steel beam, which also include economic and practical joint detail. Nevertheless stress transfer mechanism and structural behavior of the joints had not been still clearly revealed and shown much difference from the proposed equation. In this study, by observing the crossing of reinforced concrete column through steel beam to the RCS structure beam type, thirty seven shear failure specimens were selected and applied to the 5 major equations which is used to calculate the shear strength of RCS joint. Through the regression analysis, modified equation which is more reliable and approximate results for shear strength of RCS joints was proposed.

Seismic behavior of reinforced concrete column-steel beam joints with and without reinforced concrete slab

  • Tong Li;Jinjie Men;Huan Li;Liquan Xiong
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.417-430
    • /
    • 2023
  • As the key part in the reinforced concrete column-steel beam (RCS) frame, the beam-column joints are usually subjected the axial force, shear force and bending moment under seismic actions. With the aim to study the seismic behavior of RCS joints with and without RC slab, the quasi-static cyclic tests results, including hysteretic curves, slab crack development, failure mode, strain distributions, etc. were discussed in detail. It is shown that the composite action between steel beam and RC slab can significantly enhance the initial stiffness and loading capacity, but lead to a changing of the failure mode from beam flexural failure to the joint shear failure. Based on the analysis of shear failure mechanism, the calculation formula accounting for the influence of RC slab was proposed to estimate shear strength of RCS joint. In addition, the finite element model (FEM) was developed by ABAQUS and a series of parametric analysis model with RC slab was conducted to investigate the influence of the face plates thickness, slab reinforcement diameter, beam web strength and inner concrete strength on the shear strength of joints. Finally, the proposed formula in this paper is verified by the experiment and FEM parametric analysis results.

Experimental Study on the Behavior of Hybrid Beam-Column Joints Consisted of Reinforced Concrete Column and Steel Beam (철근콘크리트 기둥 및 철골보로 구성된 복합구조의 접합분 거동에 관한 실험적 연구)

  • Choi, Keun-Do;You, Young-Chan;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.297-304
    • /
    • 2003
  • This paper presents the test results of RCS(Reinforced Concrete Steel) beam-column joint with various types of transverse reinforcements such as small-column-type transverse reinforcements, four-piece ㄱ-shape assembled hoops and four-piece ㄱ-shape welded hoops. Five interior beam-column joint specimens were tested to examine the seismic performance and the shear strengths. From the test results, it was found that all the specimens sustained their strength at large levels of story drift(${\theta}$=0.035) without significant loss of strength and stiffness. Therefore it was concluded that the seismic performance and shear strength of the proposed RCS joint are at least the same as those of the specimen with conventional reinforcing details. Also, the contribution of the outer panel to the shear strength of the joint should be evaluated by the compression strut mechanism rather than compression field mechanism.

A Study on the Ultimate Shear Strength Estimation of the Interior Joints of Steel Beam and Reinforced Concrete Column (철골보와 철근콘크리트기둥으로 구성된 내부 접합부의 극한전단강도 산정에 관한 연구)

  • Mun, Sang-Hun;An, Jae-Hyeok;Park, Cheon-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.57-62
    • /
    • 2006
  • Recent trends in the construction of building frame feature the use of composite steel concrete members. One of such system, RCS(Reinforced Concrete column and Steel beam) system, is known as a type of system to maximize the structural and economic benefits in the most efficient manner. This paper is focusing on an study of ultimate shear strength estimation of the interior beam-column joints of RCS system, with reinforced concrete column and steel beam. Current design methods as well as the majority of the previous researches for ultimate shear strength of the interior beam-column joint of RCS system are not easy to apply actual manner. There is a need to propose the rational macro models based on analytical approach. In this study, design method variables for interior beam-column joints of RCS system is studied assuming shear resistance of steel web panel, diagonal concrete strut mechanism and truss mechanism. Finally, calculated results based on the proposed design model are compared with test data.

Shear Strength of Through Beam Type Beam-Column Joint composed of Reinforced Concrete Column and Steel Beam (보 관통형 RCS 접합부의 전단강도 평가)

  • Choi, Keun-Do;You, Young-Chan;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.62-70
    • /
    • 2007
  • This paper reports an evaluation method on the shear strength of interior beam-column joints composed of steel beams and reinforced concrete columns(RCS). The shear strength is generally calculated by the sum of the nominal shear resistance of a steel web panel and concrete elements. In this paper, the shear strength is calculated based on the compression strut theory instead of compression field theory. Design equations presented herein are evaluated through comparison with existing experimental results. The comparisons between experimental and calculated results show an excellent agreement.

Statistical Analysis on the Shear Strength equation of RC Column-Steel Beam Joints (RC 기둥과 철골보로 이루어진 복합구조 접합부의 전단강도식에 대한 통계적 고찰)

  • Lee Eun-Jin;Moon Jeong-Ho;Lee Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.443-446
    • /
    • 2005
  • The shear strength equations of the joint with RC column and steel beam are used the proposed equations of ASCE, Kanno and AIJ but there are not applied variable joint details. Until now the variable experimental studies are practiced but the studies of predicted shear strength equation are not integrated and only the applicable equations to each case are proposed. The purpose of this study is statistical analysis for the proposed equations applied existing experiments. The proposed equations are ASCE, Kanno, M-Kanno, AIJ and M-AIJ. The 47 of shear failure experiments are used in this study The consequence is that the Kanno's equation is very analogized with the experimental result but ASCE equation underestimates about 42$\%$. AIJ and M-AIJ are not proper equations for estimating the shear strength of RCS joint.

  • PDF

Experimental research on seismic behavior of novel composite RCS joints

  • Men, Jinjie;Guo, Zhifeng;Shi, Qingxuan
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.209-221
    • /
    • 2015
  • Results from an experimental study on the seismic response of six composite reinforced concrete column-to-steel beam interior joints are presented. The primary variable investigated is the details in the joint. For the basic specimen, the main subassemblies of the beam and column are both continuous, and the steel beam flanges extended to the joint are partly cut off. Transverse beam, steel band plates, cove plates, X shape reinforcement bars and end plates are used in the other five specimens, respectively. After the joint steel panel yielded, two failure modes were observed during the test: local failure in Specimens 1, 2 and 4, shear failure in Specimens 3, 5 and 6. Specimens 6, 3, 5 and 4 have a better strength and deformation capacity than the other two specimens for the effectiveness of their subassemblies. For Specimens 2 and 4, though the performance of strength degradation and stiffness degradation are not as good as the other four specimens, they all have excellent energy dissipation capacity comparing to the RC joint, or the Steel Reinforced Concrete (SRC) joint. Based on the test result, some suggestions are presented for the design of composite RCS joint.

Experimental study on RCS Beam Column Joints With Hooked Cross ties (고리후프형 띠근을 기진 RCS구조 접합부의 거동에 관한 실험적 연구)

  • 박상균;손민성;오정근;오경환;문정호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.625-628
    • /
    • 2000
  • Recently, composite structural systems have been developed actively due to its structural advantages of combining different materials. The objective of this paper is to investigate the structural behavior of composite connection which consist of steel beams and reinforced concrete columns (RCS). Five 2/3 scale joint specimens with variables mainly consist of shear resisting details, were tested under reversal loads. The results showed that RCS beam-column joints maintain ductility, strength compared to other RCS joints and exhibited excellent energy dissipating capacity when subjected to inelastic deformations under reversal load.

  • PDF

Experimental seismic behavior of RC special-shaped column to steel beam connections with steel jacket

  • Hao, Jiashu;Ren, Qingying;Li, Xingqian;Zhang, Xizhi;Ding, Yongjun;Zhang, Shaohua
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.101-118
    • /
    • 2022
  • The seismic performance of the reinforced concrete (RC) special-shaped column to steel beam connections with steel jacket used in the RC column to steel beam fabricated frame structures was investigated in this study. The three full-scale specimens were subjected to cyclic loading. The failure mode, ultimate bearing capacity, shear strength capacity, stiffness degradation, energy dissipation capacity, and strain distribution of the specimens were studied by varying the steel jacket thickness parameters. Test results indicate that the RC special-shaped column to steel beam connection with steel jacket is reliable and has excellent seismic performance. The hysteresis curve is full and has excellent energy dissipation capacity. The thickness of the steel jacket is an important parameter affecting the seismic performance of the proposed connections, and the shear strength capacity, ductility, and initial stiffness of the specimens improve with the increase in the thickness of the steel jacket. The calculation formula for the shear strength capacity of RC special-shaped column to steel beam connections with steel jacket is proposed on the basis of the experimental results and numerical simulation analysis. The theoretical values of the formula are in good agreement with the experimental values.