• Title/Summary/Keyword: RCPSP

Search Result 3, Processing Time 0.016 seconds

Performance Analysis of Local Optimization Algorithms in Resource-Constrained Project Scheduling Problem (자원제약 프로젝트 스케쥴링 문제에 적용 가능한 부분 최적화 방법들의 성능 분석)

  • Yim, Dong-Soon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.4
    • /
    • pp.408-414
    • /
    • 2011
  • The objective of this paper is to define local optimization algorithms (LOA) to solve Resource-Constrained Project Scheduling Problem (RCPSP) and analyze the performance of these algorithms. By representing solutions with activity list, three primitive LOAs, i.e. forward and backward improvement-based, exchange-based, and relocation-based LOAs are defined. Also, combined LOAs integrating two primitive LOAs are developed. From the experiments with standard test set J120 generated using ProGen, the FBI-based LOA demonstrates to be an efficient algorithm. Moreover, algorithms combined with FBI-based LOA and other LOA generate good solutions in general. Among the considered algorithms, the combined algorithm of FBI-based and exchangebased shows best performance in terms of solution quality and computation time.

Analysis of the Impact of Resource Allocation Strategy on the Scheduling of Core Defense Technology Project Agreements (자원배분 전략에 따른 국방핵심기술 과제 협약일정에 미치는 영향 분석)

  • Jangeun Kim;Euiyoung Jeong;Soondo Hong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.3
    • /
    • pp.8-17
    • /
    • 2024
  • There is a demand for introducing a challenging and innovative R&D system to develop new technologies to generate weapon system requirements. Despite the increasing trend in annual core technology development tasks, the infrastructure expansion, including personnel in research management institutions, is relatively insufficient. This situation continuously exposes difficulties in task planning, selection, execution, and management. Therefore, there is a pressing need for strategies to initiate timely research and development and enhance budget execution efficiency through the streamlining of task agreement schedules. In this study, we propose a strategic model utilizing a flexible workforce model, considering constraints and optimizing workload distribution through resource allocation to minimize bottlenecks for efficient task agreement schedules. Comparative analysis with the existing operational environment confirms that the proposed model can handle an average of 67 more core technology development tasks within the agreement period compared to the baseline. In addition, the risk management analysis, which considered the probabilistic uncertainty of the fluctuating number of core technology research and development projects, confirmed that up to 115 core technology development can be contracted within the year under risk avoidance.

The Problem of the Quality of the Predecessor Activity on the Time and Cost of the Successor Activity in the Project Schedule - Project Schedule with Resource Constraints - (프로젝트 일정에서 선행활동 품질이 후행활동의 시간과 비용에 미치는 문제 - 자원제약이 존재하는 프로젝트 일정문제 -)

  • Kim, Gab Sik;Bae, Byeong Man;Ahn, Tae Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.2
    • /
    • pp.265-286
    • /
    • 2022
  • Purpose: The time and cost of a project activity exists in a selected mode and there is a quality level for the selected mode, and the time and cost of the current activity is determined by the quality level of the preceding activity. When an activity is a predecessor activity of an activity, it is characterized as a trade-off problem in which the time and cost of the activity are determined according to the quality level of the activity. Methods: A neighbor search heuristic algorithm obtains a solution by (1) randomly determining the mode, quality level, and assignment order for each activity. (2) get a solution by improving the solution by changing the possible modes and quality levels; (3) to find a solution by improving the solution from the point where it is feasible to advance the start time. Here, Case[1] is a method to find the optimal solution value after repeating (1). Case [2] is a method for finding a solution including (1) and (2). Case [3] refers to a method for finding solutions including (1), (2), and (3). Results: It can be seen that the value of the objective function presented by the algorithm changes depending on how the model of the heuristic algorithm is designed and applied. In other words, it suggests the importance of algorithm design and proves the importance of the quality problem of activities in the project schedule. Conclusion: A study significance of the optimization algorithm and the heuristic algorithm was applied to the effect of the quality of the preceding activity on the duration and cost of itself and the succeeding activity, which was not addressed in the project schedule problem.