• Title/Summary/Keyword: RC test

Search Result 1,399, Processing Time 0.026 seconds

Shear Strength and Seismic Behavior of the Composite Shear Wall with the Steel Plate Embedded in the RC Wall (철판삽입 합성전단벽의 전단강도와 내진거동)

  • Chun, Young-Soo;Park, Ji-Young;Lee, Jong-Yoon
    • Land and Housing Review
    • /
    • v.8 no.3
    • /
    • pp.211-221
    • /
    • 2017
  • This study proposed hybrid coupled shear wall in the steel plate insertion method, which is capable of reinforcing the shear strength of the entire wall without increasing wall thickness in the wall-slab apartment buildings. The proposed hybrid coupled shear wall was tested for its effectiveness, shear strength and seismic behavior in experiment. As a test result, the shear strength improvement by the proposed hybrid coupled shear was found effective. Integral-type of steel plate insertion was found more effective than separate-type steel plate insertion. In this case, if the stud enforcement method proposed in this study was used, the shear strength of hybrid coupled shear wall was recommended to calculate using the KBC2016 0709.4.1(3) method. The steel plate inserted in the proposed method was found to have no significant impact on the final fracture behavior and bending strength of hybrid coupled shear wall. The shear strength at the final destruction of the wall was merely about 1/50 of the entire design shear strength. Thus, it is deemed that the wall was over excessively designed regarding the shear force in the existing design method. This finding indicates further study on wall designing to ensure effective and economic designing based on appropriate strength estimation under the destruction mechanism.

Effectiveness of steel fibers in ultra-high-performance fiber-reinforced concrete construction

  • Dadmand, Behrooz;Pourbaba, Masoud;Sadaghian, Hamed;Mirmiran, Amir
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.195-209
    • /
    • 2020
  • This study investigates the behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) with hybrid macro-micro steel and macro steel-polypropylene (PP) fibers. Compression, direct and indirect tension tests were carried out on cubic and cylindrical, dogbone and prismatic specimens, respectively. Three types of macro steel fibers, i.e., round crimped (RC), crimped (C), and hooked (H) were combined with micro steel (MS) and PP fibers in overall ratios of 2% by volume. Additionally, numerical analyses were performed to validate the test results. Parameters studied included, fracture energy, tensile strength, compressive strength, flexural strength, and residual strength. Tests showed that replacing PP fibers with MS significantly improves all parameters particularly flexural strength (17.38 MPa compared to 37.71 MPa). Additionally, the adopted numerical approach successfully captured the flexural load-deflection response of experimental beams. Lastly, the proposed regression model for the flexural load-deflection curve compared very well with experimental results, as evidenced by its coefficient of correlation (R2) of over 0.90.

Experimental investigation on self-compacting concrete reinforced with steel fibers

  • Zarrin, Orod;Khoshnoud, Hamid Reza
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.133-151
    • /
    • 2016
  • Self-Compacting Concrete (SCC) has been originally developed in Japan to offset a growing shortage of skilled labors, is a highly workable concrete, which is not needed to any vibration or impact during casting. The utilizing of fibers in SCC improves the mechanical properties and durability of hardened concrete such as impact strength, flexural strength, and vulnerability to cracking. The purpose of this investigation is to determine the effect of steel fibers on mechanical performance of traditionally reinforced Self-Competing Concrete beams. In this study, two mixes Mix 1% and Mix 2% containing 1% and 2% volume friction of superplasticizer are considered. For each type of mixture, four different volume percentages of 60/30 (length/diameter) fibers of 0.0%, 1.0%, 1.5% and 2% were used. The mechanical properties were determined through compressive and flexural tests. According to the experimental test results, an increase in the steel fibers volume fraction in Mix 1% and Mix 2% improves compressive strength slightly but decreases the workability and other rheological properties of SCC. On the other hand, results revealed that flexural strength, energy absorption capacity and toughness are increased by increasing the steel fiber volume fraction. The results clearly show that the use of fibers improves the post-cracking behavior. The average spacing of between cracks decrease by increasing the fiber volume fraction. Furthermore, fibers increase the tensile strength by bridging actions through the cracks. Therefore, steel fibers increase the ductility and energy absorption capacity of RC elements subjected to flexure.

Development of Simulated signal generator for Small Millimeter-wave Tracking Radar (소형 밀리미터파 추적 레이다용 모의신호 발생장치 개발)

  • Kim, Hong-Rak;Park, Seung-Wook;Woo, Seon-Keol;Kim, Youn-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.157-163
    • /
    • 2019
  • A small millimeter-wave tracking radar is a pulse radar that searches, detects, and tracks a target in real time through a TWS (Track While Scan) method on a sea-going traps target with a large RCS running at low speed. This paper describes the development of a simulated signal generator to verify the performance of a small millimeter wave tracking radar in laboratory anechoic chamber environment. We describe a GUI program for testing and performance analysis in conjunction with hardware configuration and tracking radar, and verified the simulated signal generator implemented through performance test.

Study on Torsional Strength of Reinforced Concrete Members (철근콘크리트 부재의 비틀림강도에 관한 연구)

  • Park, Chang-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.145-150
    • /
    • 2019
  • This paper proposes a model for the calculation of the ultimate torsional strength in normal-strength and high-strength concrete beams which include the concrete contribution strength and use a reasonable thickness of shear flow. The adequacy of the proposed model is evaluated by comparing the calculated torsional strength with the experimentally observed results from 104 test specimens reported in the literature. The results are also compared with the calculations of the KCI and the ACI building code equations, and those of other model which include the concrete contribution strength. The comparisons show that the ultimate torsional strengths calculated by the proposed equation and Rahal's equation are closer to the experimentally observed results than those calculated by the code equations.

Full-Scale Shaker Testing of Non-Ductile RC Frame Structure Retrofitted Using High-Strength Near Surface Mounted Rebars and Carbon FRP Sheets (고강도 표면매립용철근과 탄소섬유시트로 보강된 비연성 철근콘크리트 골조의 실물 진동기 실험)

  • Shin, Jiuk;Jeon, Jong-Su;Wright, Timothy R.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.43-54
    • /
    • 2019
  • Existing reinforced concrete frame buildings designed for only gravity loads have been seismically vulnerable due to their inadequate column detailing. The seismic vulnerabilities can be mitigated by the application of a column retrofit technique, which combines high-strength near surface mounted bars with a fiber reinforced polymer wrapping system. This study presents the full-scale shaker testing of a non-ductile frame structure retrofitted using the combined retrofit system. The full-scale dynamic testing was performed to measure realistic dynamic responses and to investigate the effectiveness of the retrofit system through the comparison of the measured responses between as-built and retrofitted test frames. Experimental results demonstrated that the retrofit system reduced the dynamic responses without any significant damage on the columns because it improved flexural, shear and lap-splice resisting capacities. In addition, the retrofit system contributed to changing a damage mechanism from a soft-story mechanism (column-sidesway mechanism) to a mixed-damage mechanism, which was commonly found in reinforced concrete buildings with strong-column weak-beam system.

Bond strength prediction of spliced GFRP bars in concrete beams using soft computing methods

  • Shahri, Saeed Farahi;Mousavi, Seyed Roohollah
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.305-317
    • /
    • 2021
  • The bond between the concrete and bar is a main factor affecting the performance of the reinforced concrete (RC) members, and since the steel corrosion reduces the bond strength, studying the bond behavior of concrete and GFRP bars is quite necessary. In this research, a database including 112 concrete beam test specimens reinforced with spliced GFRP bars in the splitting failure mode has been collected and used to estimate the concrete-GFRP bar bond strength. This paper aims to accurately estimate the bond strength of spliced GFRP bars in concrete beams by applying three soft computing models including multivariate adaptive regression spline (MARS), Kriging, and M5 model tree. Since the selection of regularization parameters greatly affects the fitting of MARS, Kriging, and M5 models, the regularization parameters have been so optimized as to maximize the training data convergence coefficient. Three hybrid model coupling soft computing methods and genetic algorithm is proposed to automatically perform the trial and error process for finding appropriate modeling regularization parameters. Results have shown that proposed models have significantly increased the prediction accuracy compared to previous models. The proposed MARS, Kriging, and M5 models have improved the convergence coefficient by about 65, 63 and 49%, respectively, compared to the best previous model.

Assessment of shear resistance of corroded beams repaired using SFRC in the tension zone

  • Jongvivatsakul, Pitcha;Laopaitoon, Phattarakan;Nguyen, Yen T.H.;Nguyen, Phuoc T.;Bui, Linh V.H.
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.395-406
    • /
    • 2021
  • This study experimentally and analytically investigates the shear behavior of corroded reinforced concrete (RC) beams repaired using steel fiber-reinforced concrete (SFRC) in the flexural zone. The experimental parameters are the corrosion degree (0%, 12%, and 17%) and the steel fiber volume in the SFRC (1.0%, 1.5%, and 2.0%). The test results reveal that corrosion degree significantly affects the shear resistance of the beams. The shear capacity of the beam with the corrosion degree of 17% was higher than that of the uncorroded beam, whereas the shear capacity of the beam with the corrosion degree of 12% was lower than that of the uncorroded beam. The shear efficiency of damaged beams can be recovered by repairing them using SFRC that contains a reasonable amount of steel fibers. In addition, two methods to estimate the shear capacity of the repaired beams are developed using the modified truss analogy and strut-and-tie models. The estimated shear capacity of the beam using the modified truss analogy model agrees well with the experimental data.

An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method (격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 구조성능평가)

  • Moon, Hong Bi;Lee, Jeong In;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • In the case of columns in buildings with soft story, the concentration of stress due to the difference in stiffness can damage the columns. The irregularity of buildings including soft story requires retrofit because combined load of compression, bending, shear, and torsion acts on the structure. Concrete jacketing is advantageous in securing the strength and stiffness of existing members. However, the brittleness of concrete make it difficult to secure ductility to resist the large deformation, and the complicated construction process for integrity between the existing member and extended section reduces the constructability. In this study, two types of Steel Grid Reinforcement (SGR), which are Steel Wire Mesh (SWM) for integrity and Steel Fiber Non-Shrinkage Mortar (SFNM) for crack resistance are proposed. One reinforced concrete (RC) column with non-seismic details and two columns retrofitted with each different types of proposed method were manufactured. Seismic performance was analyzed for cyclic loading test in which a combined load of compression, bending, shear, and torsion was applied. As a result of the experiment, specimens retrofitted with proposed concrete jacketing method showed 862% of maximum load, 188% of maximum displacement and 1,324% of stiffness compared to non-retrofitted specimen.

Analysis of finishing details to Prevent leakage of PC Apartment Joints in Korea (국내 PC 아파트 접합부 누수 방지를 위한 마감상세 분석)

  • Kim, Tae-Ho;Ko, Hyo-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.81-89
    • /
    • 2021
  • Recently, interest in OSC(Off Site Construction) is increasing due to the trend of a decrease in skilled workers and an increase in labor costs. In this regard, PC(Precast Concrete) is being reviewed for apartments, the most common type of housing in Korea. As the biggest concern for PC apartment houses, civil complaints such as inter-floor noise and leakage were presented. In this study, the details of the joints were reviewed based on the past cases of PC apartments, and the details of the recently constructed or planned PC apartments were investigated. Through this, the leakage path in the past was analyzed through the existing research literature and data. And wall type RC and PC apartment joint leakage test was performed and we found the needs for a detail of waterproof steps, sealant. Also, joint details were investigated for a rahmen type apartment housing under construction. At last, A discussion was conducted on the direction for a detailed proposal of an improved joint in the future.