• Title/Summary/Keyword: RC slab bridge

Search Result 68, Processing Time 0.027 seconds

Analytical Models for the Prediction of the Flexural Behavior for Thermal Bridge Breaker Systems embedded in Reinforced Concrete Slabs (열교차단장치가 적용된 철근 콘크리트 슬래브의 휨거동 예측을 위한 해석모델)

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.325-333
    • /
    • 2015
  • Recently, thermal bridge breaker systems(TBBSs) applicable to RC slab-wall connections have been increasingly studied and proposed. This study also aims at proposing an analytic model which is applicable to predicting the flexural behavior of TBBS embedded in slabs from the initial elastic stages, yield states to ultimate conditions. The analytic models are developed by considering strain compatibility, force equilibrium and the constitutive law obtained from material test results. To verify the accuracy of the proposed analytic model, the moment-curvature relationship and change of neutral axis according to the loading states are compared with those of experimental results. Based on the comparison, it is verified that the proposed analytic model provides well predict the flexural behavior of TBBS embedded in slabs.

Theoretical Analysis of Interface Debonding on the Strengthened RC Bridge Decks (성능향상된 RC 바닥판의 계면파괴 해석)

  • 오홍섭;심종성
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.668-676
    • /
    • 2002
  • Especially, when orthotropic material such as uni-dierectionally woven Carbon Fiber Sheet, resisting only the unidirectional tension, is used to strengthening bridge deck, the direction and width of the strengthening material should be considered very carefully. Thus, analysis of the failure characteristics and the premature failure mechanism of the strengthened decks based on the test results are required. In this study, the premature failure due to the interface debonding of strengthening material of the strengthened deck slab are inquired into failure mechanism through both experiments results and analyses with prototype strengthened deck specimens using carbon fiber sheet. From the test results, interface debonding of strengthening material is occured at the crack face

A study on the Life Cycle Profiles(LCP) for RC Slab Bridge (철근콘크리트 슬래브교의 노후화 예측모델에 관한 연구)

  • Ahn, Young-Ki;Lee, Chae-Gue;Lee, Jin-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.251-262
    • /
    • 2003
  • LCP(Life Cycle Profiles) of bridge structures are indispensable for the LCC(Life Cycle Cost) evaluations of bridge system. The bridge under considerations may be newly-designed one or one in service. Thus, a systematic study of LCP is essential for both reliable LCC evaluation and strategic bridge management. LCP is mainly influenced by the structural environment in nature. However, in Korea, LCC evaluation has been performed with the LCP of foreign research results or only with the pieces of professional engineers' opinion. Therefore, to alleviate the drawbacks of foreign LCP and to enhance the reliability of current LCP, LCP should be established using the available data in bridge management system(BMS). In this study, LCP along with a subset of the BMS data was investigated and several mathematical expressions were proposed and evaluated. The condition ratings of a bridge were trasformed into the numerical indices through fuzzy logics with real field data. From the numerical results, it is concluded that the mathematical LCP model of $y=\sqrt{y^2_0-at}$ is shown to be the fittest one (R=0.815) to express the condition rating varied with the age. This has been drawn from the case study of slab bridges under the similar conditions.

Crack Control of Concrete Slab Track System (콘크리트 슬래브궤도의 균열제한)

  • Kang Bo-Soon
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.862-867
    • /
    • 2004
  • In this paper, the crack properties of steel fiber reinforced concrete (SFHC) beams by experimental method are discussed. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to break crack, SFRC has better crack properties than that of reinforced concrete (RC). Crack properties are influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete and the stress level. Crack width and crack number in the SFRC beams havebeen evaluated from experimental test data at various levels in the beams.

  • PDF

Investigation of Sectional Force on Increasing of Dead Load with Bridge Deck Overlay using Electric Arc Furnace Slag Sand (전기로(電氣爐) 산화(酸化)슬래그 잔골재를 이용한 교면포장(橋面鋪裝) 시 단위질량(單位質量) 증대(增大)에 따른 슬래브 단면력(斷面力) 검토(檢討))

  • Jung, Won-Kyong;Chon, Beom Jun;Gil, Yong-Soo
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.62-70
    • /
    • 2013
  • Electric arc furnace slag is made in ironworks during steel refining, it is been increasing chemical and physical resistibility using ageing method of unstable state of melting steel slag for using concrete's fine aggregates. Which is been changing stable molecular structure of aggregates, it restrains moving of ion and molecule. In Korea, KS F 4571 has been prepared for using the electric arc furnace slag to concrete aggregates. In this study, Electric arc furnace slag is used in the PMC(Polymer Modified Concrete) which is applied a bridge pavement of rehabilitation, largely. In that case, this study evaluates the structural safety about increasing the specific weight. The 4-type bridges(RC slab bridge, RC rigid-frame bridge, PSC Beam bridge, Steel box girder bridge) pavement's increasing the total dead load is in 1 ~ 2%. Design moments in a load combination are increased less then 2%. safety factor is decreased less than 3%. Therefore, the structural safety has no problem for applying the electric arc furnace slag within PMC in bridge.

Limit load equations for partially restrained RC slabs

  • Olufemi, O.O.;Cheung, K.L.;Hossain, K.M.A.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.1
    • /
    • pp.1-20
    • /
    • 2005
  • The expertise required in the judicious use of nonlinear finite element (FE) packages for design-assistance purposes is not widely available to the average engineer, whose sole aim may be to obtain an estimate for a single design parameter, such as the limit load capacity of a structure. Such a parameter may be required for the design of a proposed reinforced concrete (RC) floor slab or bridge deck with a given set of geometrical and material details. This paper outlines a procedure for developing design-assistance equations for carrying out such predictions for partially restrained RC slabs under uniformly distributed loading condition, based on a database of FE results previously generated from a large number of 'numerical model' slabs. The developed equations have been used for predicting the peak loads of a number of experimental RC slabs having varying degrees of edge restraints; with results showing a reasonable degree of accuracy and low level of scatter. The simplicity of the equations makes them attractive and their successful use in the field of application reported in this paper suggest that the outlined procedure may also be extended to other classes of concrete structures.

Design Equation Suggestion through Parametric Study of Laterally Restrained Concrete Decks with Steel Strap (Steel Strap으로 횡보강된 콘크리트 바닥판의 매개변수해석을 통한 설계식 제안)

  • Kim, Cheol-Hwan;Yi, Seong-Tae;Jo, Byung-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.49-57
    • /
    • 2014
  • A deterioration of typical reinforced concrete (RC) bridge deck is due to the use of calcium chloride, cracks and water penetration inside of the deck slab with steel reinforcement. In order to eliminate the defects of RC decks in terms of material, therefore, the steel-strapped deck system is studied and developed by maximizing the arching effect while the girders are restrained using straps in lateral direction to the bridge. This parametric study was performed to analyze the structural characteristics of steel-strapped deck, and to identify the factors of the thickness, span length and lateral restraint stiffness of deck slab considering the concrete non-linearity. Finally, a design equation, which is adequate to South Korea, is suggested.

Spectra of Road Surface Roughness on Bridges of Minor Road (지방도 도로교 노면조도의 스펙트럼)

  • Chung, Tae Ju;Cha, Bong Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.757-767
    • /
    • 2016
  • The power spectral density (PSD) for the road surface roughness on the bridges of minor roads in Wonju city and Hoengseong-gun, Gangwon-do is presented. To obtain the PSD, the road surface roughness on 18 different bridges with various superstructure type and span is measured by GPS at every 10 to 30cm interval. Assuming the PSD as the stationary normal probability process with zero mean value, the PSD of measured road surface roughness is obtained by applying the Maximum Entropy Method (MEM). A simple formula in evaluating the PSD of RC slab bridge, Rahmen bridge and PSC I-girder bridge which is applicable to the dynamic response analysis of bridges considering the road surface roughness is proposed. Using the calculated PSD curves, the road surface conditions on the 18 bridges are evaluated. The statistical relationship between the PSD and the IRI is presented by applying linear regression and correlation analysis.

A Study on Improvement of Maintenance Strategy based on Analysis of Bridge Safety Grade (교량 안전등급 분석을 통한 유지관리전략 개선 방안 연구)

  • Hwang, Yoon-Koog;Sun, Jong-Wan;Choi, Young-Min;Park, Kyung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.36-43
    • /
    • 2021
  • Because bridges are major national infrastructure, regular safety inspections or diagnoses for bridges have been conducted in accordance with the "Special Act on the Safety and Maintenance of Facilities." Accordingly, the condition and safety assessments of the bridge are conducted to derive the condition and safety rating, respectively. A lower result is determined to be the safety grade of the bridge. In this study, the relationship between the condition rating and safety rating, which are the core of the bridge safety grade, was analyzed by the representative superstructure types of bridges, such as RC slab, PSCI girder, Steel box girder, Rhamen, and Preflex girder, to identify the correlation status and range between each rating. A reasonable improvement direction for establishing existing maintenance policies was suggested by proposing an alternative plan to change the proper implementation cycle of the inspection and diagnosis of bridge superstructure types. As a result of the research, it is necessary to adjust the inspection and diagnosis cycle according to the superstructure type and safety grade. In addition, maintenance policies need to be improved through detailed research on more diverse bridge types in the future.

A Reliability Analysis considering the Second Composite Effect in the To-Box Reinforcement of Deteriorated PSC Beam Bridge (PSC Beam의 박스형 보강 시 이차합성을 고려한 신뢰성해석)

  • Han Sung-Ho;Cho Chang-Joo;Bang Myung-Seok;Shin Jae-Chul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.400-407
    • /
    • 2005
  • The reinforcing effect of modified structure of PSC beams is analyzed in this study. The PSC beams are closed by precast half panels embeding PS tendons at the bottom flange of I-bear The stiffness of box structure is larger and the PS force at half panels makes a time-dependent upward camber of superstructures. The superstructure becomes a second composite structure among 3 elements-PSC ben RC slab, PSC Panel. The time-dependent creep and shrinkage effect at PSC Panels and structural behavior is verified considering construction sequences. The optimal range of to-box reinforcing method is surveyed through reliability analysis.

  • PDF