• 제목/요약/키워드: RC slab

검색결과 305건 처리시간 0.022초

Load-deflection analysis prediction of CFRP strengthened RC slab using RNN

  • Razavi, S.V.;Jumaat, Mohad Zamin;El-Shafie, Ahmed H.;Ronagh, Hamid Reza
    • Advances in concrete construction
    • /
    • 제3권2호
    • /
    • pp.91-102
    • /
    • 2015
  • In this paper, the load-deflection analysis of the Carbon Fiber Reinforced Polymer (CFRP) strengthened Reinforced Concrete (RC) slab using Recurrent Neural Network (RNN) is investigated. Six reinforced concrete slabs having dimension $1800{\times}400{\times}120mm$ with similar steel bar of 2T10 and strengthened using different length and width of CFRP were tested and compared with similar samples without CFRP. The experimental load-deflection results were normalized and then uploaded in MATLAB software. Loading, CFRP length and width were as neurons in input layer and mid-span deflection was as neuron in output layer. The network was generated using feed-forward network and a internal nonlinear condition space model to memorize the input data while training process. From 122 load-deflection data, 111 data utilized for network generation and 11 data for the network testing. The results of model on the testing stage showed that the generated RNN predicted the load-deflection analysis of the slabs in acceptable technique with a correlation of determination of 0.99. The ratio between predicted deflection by RNN and experimental output was in the range of 0.99 to 1.11.

Factors governing dynamic response of steel-foam ceramic protected RC slabs under blast loads

  • Hou, Xiaomeng;Liu, Kunyu;Cao, Shaojun;Rong, Qin
    • Steel and Composite Structures
    • /
    • 제33권3호
    • /
    • pp.333-346
    • /
    • 2019
  • Foam ceramic materials contribute to the explosion effect weakening on concrete structures, due to the corresponding excellent energy absorption ability. The blast resistance of concrete members could be improved through steel-foam ceramics as protective cladding layers. An approach for the modeling of dynamic response of steel-foam ceramic protected reinforced concrete (Steel-FC-RC) slabs under blast loading was presented with the LS-DYNA software. The orthogonal analysis (five factors with five levels) under three degrees of blast loads was conducted. The influence rankings and trend laws were further analyzed. The dynamic displacement of the slab bottom was significantly reduced by increasing the thickness of steel plate, foam ceramic and RC slab, while the displacement decreased slightly as the steel yield strength and the compressive strength of concrete increased. However, the optimized efficiency of blast resistance decreases with factors increase to higher level. Moreover, an efficient design method was reported based on the orthogonal analysis.

Implementation of bond-slip effects on behaviour of slabs in structures

  • Mousavi, S.S.;Dehestani, M.
    • Computers and Concrete
    • /
    • 제16권2호
    • /
    • pp.311-327
    • /
    • 2015
  • Employing discrete elements for considering bond-slip effects in reinforced concrete structures is very time consuming. In this study, a new modified embedded element method is used to consider the bond-slip phenomenon in structural behavior of reinforced concrete structures. A comprehensive parametric study of RC slabs is performed to determine influence of different variables on structural behavior. The parametric study includes a set of simple models accompanied with complex models such as multi-storey buildings. The procedure includes the decrease in the effective stiffness of steel bar in the layered model. Validation of the proposed model with existing experimental results demonstrates that the model is capable of considering the bond-slip effects in embedded elements. Results demonstrate the significant effect of bond-slip on total behavior of structural members. Concrete characteristic strengths, steel yield stress, bar diameter, concrete coverage and reinforcement ratios are the parameters considered in the parametric study. Results revealed that the overall behavior of slab is significantly affected by bar diameter compared with other parameters. Variation of steel yield stress has insignificant impact in static response of RC slabs; however, its effect in cyclic behavior is important.

대공간 교육시설에 사용되는 합성보 및 콘크리트 슬래브의 진동평가에 대한 연구 (A Study for Vibration Characteristics of RC Slab with Hybrid Beams in Large Span Educational Facilities)

  • 이경훈;정은호
    • 교육녹색환경연구
    • /
    • 제9권3호
    • /
    • pp.34-40
    • /
    • 2010
  • In this study, vibration characteristics of reinforced concrete slab in large span educational facilities were evaluated. A 21.75m X 14.4m full scale reinforced concrete slab specimen was constructed with pre-flex hybrid beams. Vibrations were generated by three different methods such as free falling method of a 6kg sand bag, a 70kg person walking method and impact method by impulse hammer. Vibrations were generated more than 3 times at single location. Vibration characteristic data were collected by SA390 signal analyzer machine at 5 different locations.

Reshoring effects on deflections of multi-shored flat plate systems under construction

  • Kang, Su-Min;Eom, Tae-Sung;Kim, Jae-Yo
    • Structural Engineering and Mechanics
    • /
    • 제45권4호
    • /
    • pp.455-470
    • /
    • 2013
  • RC flat plates that have no flexural stiffness by boundary beams may be governed by a serviceability as well as a strength condition. A construction sequence and its impact on the distributions of construction loads among slabs tied by shores are decisive factors influencing immediate and long term performances of flat plate. Over-loading and tensile cracking in early-aged slabs significantly increase the deflection of a flat plate system under construction. A reshoring work may be helpful in reducing slab deflections by controlling the vertical distributions of construction loads in a multi-shored flat plate system. In this study, a change of construction loads by reshoring works and its effects on deflections of flat plate systems under construction are analyzed. The slab construction loads with various reshoring schemes are defined by a simplified method, and the practical calculation of slab deflections with considering construction sequences and concrete cracking effects is applied. From parametric studies, the reshoring works are verified to reduce construction loads and slab deflections.

Layered finite element method in cracking and failure analysis of RC beams and beam-column-slab connections

  • Guan, Hong;Loo, Yew-Chaye
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.645-662
    • /
    • 1997
  • A nonlinear semi-three-dimensional layered finite element procedure is developed for cracking and failure analysis of reinforced concrete beams and the spandrel beam-column-slab connections of flat plates. The layered element approach takes the elasto-plastic failure behaviour and geometric nonlinearity into consideration. A strain-hardening plasticity concrete model and a smeared steel model are incorporated into the layered element formulation. Further, shear failure, transverse reinforcement, spandrel beams and columns are successfully modelled. The proposed method incorporating the nonlinear constitutive models for concrete and steel is implemented in a finite element program. Test specimens including a series of reinforced concrete beams and beam-column-slab connections of flat plates are analysed. Results confirm the effectiveness and accuracy of the layered procedure in predicting both flexural and shear cracking up to failure.

비부착 포스트텐션 플랫 슬래브의 설계와 시공 (Design and Construction of Flat Slab using Unbonded Post-tension System)

  • 정광량;박정우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 2부
    • /
    • pp.91-96
    • /
    • 2011
  • The flat slab is well-known as a structural system to reduce the story height, so it is broadly used for recent building. However, the normal RC flat slab is not appropriate for the long span, and the quantity of reinforcement bar and concrete is raised. Recently, the post-tensioning system has been introduced and used widely as an alternative method. Nevertheless, in Korea, it is not used broadly due to lack of the understanding and field experience. Especially, the post-tensioning system is hesitated to use due to uncertainty of construction ability and economics. This paper will introduce applicability to site and economics of unbonded post-tensioning system through construction examples.

  • PDF

슬래브가 있는 넓은 보-기둥 접합부의 전단거동 (Shear Behavior of Wide Beam-Column Joints with Slab)

  • 안종문;최종인;신성우;이범식;박성식;양지수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.157-162
    • /
    • 2003
  • An experimental investigation was conducted to study the behavior of high-strength RC wide beam-column joints with slab subjected to reversed cyclic loads under constant axial load. Six half scale interior wide beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including three specimens without slab and three specimens with slab. The primary variables were compressive strength of concrete($f_ck$=285, 460kgf/$cm^2$), the ratio of the column-to-beam flexural capacity($M_r$=$\Sigma M_c / \Sigma M_b$ ; 0.77 -2.26), extended length of the column concrete($l_d$ ; 0, 12.5, 30cm), ratio of the column-to-beam width(b/H ; 1.54, 1.67). Test results are shown that (1) the behavior of specimen using high-strength concrete satisfied for required minimum ductile capacity according to increase the compressive strength, (2) the current design code and practice for interior joints(type 2) are apply to the wide beam-high strength concrete column.

  • PDF

탄소섬유와 L형강을 이용한 벽-슬래브 접합부의 보강성능 (Structural Performance of Seismic Resistance Capacity of Carbon Sheet-Angle Retrofitting Method in Wall-Slab Joint)

  • 노공기;박태원;박현수;정란
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.65-68
    • /
    • 2004
  • In the seismical capacity evaluation for RC structure wall-slab joint is very important factor. Because lateral load is resistance element and gravity load resistance element are acted mutually in the wall-slab joint. In this paper, to improve the seismic capacity of the wall-slab joint in the existing wall type apartments experiment which improve and retrofit a seismic capacity by unequal angle bracing and carbon sheet attachment are carried out. These methods are also economic and simple in mitigating seismic hazard, improve earthquake-resistance performance, and reduce risk level of building occupants. From the experimental results, the change of strength, degration of stiffness, and energy dissipation are evaluated. It can be concluded that these methods are effective in improving the seismic performance.

  • PDF