• Title/Summary/Keyword: RC frames

Search Result 298, Processing Time 0.023 seconds

Seismic response of RC frames under far-field mainshock and near-fault aftershock sequences

  • Hosseini, Seyed Amin;Ruiz-Garcia, Jorge;Massumi, Ali
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.395-408
    • /
    • 2019
  • Engineered structures built in seismic-prone areas are affected by aftershocks in addition to mainshocks. Although aftershocks generally are lower in magnitude than that of the mainshocks, some aftershocks may have higher intensities; thus, structures should be able to withstand the effect of strong aftershocks as well. This seismic scenario arises for far-field mainshock along with near-field aftershocks. In this study, four 2D reinforced concrete (RC) frames with different numbers of stories were designed in accordance with the current Iranian seismic design code. As a way to evaluate the seismic response of the case-study RC frames, the inter-story drift ratio (IDR) demand, the residual inter-story drift ratio (RIDR) demand, the Park-Ang damage index, and the period elongation ratio can be useful engineering demand parameters for evaluating their seismic performance under mainshock-aftershock sequences. The frame models were analyzed under a set of far-field mainshock, near-fault aftershocks seismic sequences using nonlinear dynamic time-history analysis to investigate the relationship among IDR, RIDR, Park-Ang damage index and period ratio experienced by the frames. The results indicate that the growth of IDR, RIDR, Park-Ang damage index, and period ratio in high-rise and short structures under near-fault aftershocks were significant. It is evident that engineers should consider the effects of near-fault aftershocks on damaged frames that experience far-field mainshocks as well.

Experimental and numerical investigation on RC moment-Resisting frames retrofitted with NSD yielding dampers

  • Esfandiari, J.;Zangeneh, E.;Esfandiari, S.
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.339-347
    • /
    • 2022
  • Retrofitting in reinforced concrete structures has been one of the most important research topics in recent years. There are several methods for retrofitting RC moment-resisting frames. the most important of which is the use of steel bracing systems with yielding dampers. With a proper design of yielding dampers, the stiffness of RC frame systems can be increased to the required extent so that the ductility of the structure is not significantly reduced. In the present study, two experimental samples of a one-third scale RC moment-resisting frame were loaded in the laboratory. In these experiments, the retrofitting effect of RC frames was investigated using Non-uniform Slit Dampers (NSDs). Based on the experimental results of the samples, seismic parameters, i.e., stiffness, ductility, ultimate strength, strength reduction coefficient, and energy dissipation capacity, were compared. The results demonstrated that the retrofitted frame had very significant growth in terms of stiffness, ultimate strength, and energy dissipation capacity. Although the strength reduction factor and ductility decreased in the retrofitted sample. In general, the behavior of the frame with NSDs was evaluated better than the bare frame.

Nonlinear Analytical Model for RC Flat Plate Frames (RC 플랫 플레이트 골조의 비선형 해석모델)

  • Park, Young-Mi;HwangBo, Jin;Han, Sang-Whan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.241-244
    • /
    • 2008
  • In general, RC flat plate frames have been used as a gravity load resisting system(GLRS) in building. This system should be constructed with lateral force resisting system(LFRS) such as shear walls and brace frames. When lateral loads such as earthquakes occur, LFRS undergo displacement by which connected gravity systems experience lateral displacement. Thus, flat plate system designed as GLRS should be predict unbalanced moments and punching failure due to lateral deformation. This study developed an analytical mode for predicting nonlinear behavior of RC slab column connection for the seismic performance evaluation of RC flat plate frames. For verifying the analytical model, the test results of two flat plate specimens having two continous spans with the difference gravity shear ratio($V_g/{\phi}V_c$) were compared with the results of analysis. The developed model can predict the failure modes and punching failures.

  • PDF

Experimental investigation of a frame retrofitted with carbon textile reinforced mortar

  • Sinan M., Cansunar;Kadir, Guler
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.473-491
    • /
    • 2022
  • The research investigates experimentally the effect of confinement on structural behavior at the ends of beam-column in reinforced concrete (RC) frames. In the experimental study, five specimens consisting of 1/3-scaled RC frames having single-bay, representing the traditional deficiencies of existing buildings constructed without receiving proper engineering service is investigated. The RC frame specimens were produced to represent most of the existing buildings in Turkey that have damage potential. To decrease the probable damage to the existing buildings exposed to earthquakes, the carbon Textile Reinforced Mortar (TRM) strengthening technique (fully wrapping) was used on the ends of the RC frame elements to increase the energy dissipation and deformation capacity. The specimens were tested under reversed cyclic lateral loading with constant axial loads. They were constructed satisfying the weak column-strong beam condition and consisting of low-strength concrete, such as compressive strength of 15 MPa. The test results were compared and evaluated considering stiffness, strength, energy dissipation capacity, structural damping, ductility, and damage propagation in detail. Comprehensive investigations of these experimental results reveal that the strengthening of a brittle frame with fully-TRM wrapping with non-anchored was effective in increasing the stiffness, ductility, and energy dissipation capacities of RC bare frames. It was also observed that the frame-only-retrofitting with an infill wall is not enough to increase the ductility capacity. In this case, both the frame and infill wall must be retrofitted with TRM composite to increase the stiffness, lateral load carrying, ductility and energy dissipation capacities of RC frames. The presented strengthening method can be an alternative strengthening technique to enhance the seismic performance of existing or moderately damaged RC buildings.

Seismic Performance Assessment of a Mid-Rise RC Building subjected to 2016 Gyeongju Earthquake (2016년 경주지진에 의한 중층 RC 건물의 내진 성능 평가)

  • Lee, Do Hyung;Jeon, Jong-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.473-483
    • /
    • 2016
  • In this paper, seismic performance assessment has been examined for a mid-rise RC building subjected to 2016 Gyeongju earthquake occurred in Korea. For the purpose of the paper, 2D external and internal frames in each direction of the building have been employed in the present comparative analyses. Nonlinear static pushover analyses have been conducted to estimate frame capacities. Nonlinear dynamic time-history analyses have also been carried out to examine demands for the frames subjected to ground motions recorded at stations in near of Gyeongju and a previous earthquake ground motion. Analytical predictions demonstrate that maximum demands are significantly affected by characteristics of both spectral acceleration response and spectrum intensity over a wide range of periods. Further damage potential of the frames has been evaluated in terms of fragility analyses using the same ground motions. Fragility results reveal that the ground motion characteristics of the Gyeongju earthquake have little influence on the seismic demand and fragility of frames.

Finite element model updating of in-filled RC frames with low strength concrete using ambient vibration test

  • Arslan, Mehmet Emin;Durmus, Ahmet
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.111-127
    • /
    • 2013
  • This paper describes effects of infill walls on behavior of RC frame with low strength, including numerical modeling, modal testing and finite-element model updating. For this purpose full scaled, one bay and one story RC frame is produced and tested for plane and brick in-filled conditions. Ambient-vibration testis applied to identify dynamic characteristics under natural excitations. Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are used to obtain experimental dynamic characteristics. A numerical modal analysis is performed on the developed two-dimensional finite element model of the frames using SAP2000 software to provide numerical frequencies and mode shapes. Dynamic characteristics obtained by numerical and experimental are compared with each other and finite element model of the frames are updated by changing some uncertain modeling parameters such as material properties and boundary conditions to reduce the differences between the results. At the end of the study, maximum differences in the natural frequencies are reduced on average from 34% to 9% and a good agreement is found between numerical and experimental dynamic characteristics after finite-element model updating. In addition, it is seen material properties are more effective parameters in the finite element model updating of plane frame. However, for brick in-filled frame changes in boundary conditions determine the model updating process.

Effectiveness of different standard and advanced pushover procedures for regular and irregular RC frames

  • Landi, Luca;Pollioa, Bernardino;Diotallevi, Pier Paolo
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.433-446
    • /
    • 2014
  • The purpose of the research presented in this paper was to investigate the effectiveness of several conventional, multi-modal and adaptive pushover procedures. In particular, an extensive numerical study was performed considering eight RC frames characterized by a variable number of storeys and different properties in terms of regularity in elevation. The results of pushover analyses were compared with those of nonlinear dynamic analyses, which were carried out considering different earthquake records and increasing values of earthquake intensity. The study was performed with reference to base shear-top displacement curves and to different storey response parameters. The obtained results allowed a direct comparison between the pushover procedures, which in general were able to give a fairly good estimate of seismic demand with a tendency to better results for lower frames. The advanced procedures, in particular the multi-modal pushover, provided an improvement of the results, more evident for the irregular frames.

Experimental work on seismic behavior of various types of masonry infilled RC frames

  • Misir, I. Serkan;Ozcelik, Ozgur;Girgin, Sadik Can;Kahraman, Serap
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.763-774
    • /
    • 2012
  • Reinforced concrete frame structures with masonry infill walls constitute the significant portion of the building stock in Turkey. Therefore it is very important to understand the behavior of masonry infill frame structures under earthquake loads. This study presents an experimental work performed on reinforced concrete (RC) frames with different types of masonry infills, namely standard and locked bricks. Earthquake effects are induced on the RC frames by quasi-static tests. Results obtained from different frames are compared with each other through various stiffness, strength, and energy related parameters. It is shown that locked bricks may prove useful in decreasing the problems related to horizontal and vertical irregularities defined in building codes. Moreover tests show that locked brick infills maintain their integrity up to very high drift levels, showing that they may have a potential in reducing injuries and fatalities related to falling hazards during severe ground shakings.

Seismic performance of non-ductile detailing RC frames: An experimental investigation

  • Hidayat, Banu A.;Hu, Hsuan-Teh;Hsiao, Fu-Pei;Han, Ay Lie;Pita, Panapa;Haryanto, Yanuar
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.485-498
    • /
    • 2020
  • Non-ductile detailing of Reinforced Concrete (RC) frames may lead to structural failure when the structure is subjected to earthquake response. These designs are generally encountered in older RC frames constructed prior to the introduction of the ductility aspect. The failure observed in the beam-column joints (BCJs) and accompanied by excessive column damage. This work examines the seismic performance and failure mode of non-ductile designed RC columns and exterior BCJs. The design was based on the actual building in Tainan City, Taiwan, that collapsed due to the 2016 Meinong earthquake. Hence, an experimental investigation using cyclic testing was performed on two columns and two BCJ specimens scaled down to 50%. The experiment resulted in a poor response in both specimens. Excessive cracks and their propagation due to the incursion of the lateral loads could be observed close to the top and bottom of the specimens. Joint shear failure appeared in the joints. The ductility of the member was below the desired value of 4. This is the minimum number required to survive an earthquake with a similar magnitude to that of El Centro. The evidence provides an understanding of the seismic failure of poorly detailed RC frame structures.

Seismic performance improvement of RC buildings with external steel frames

  • Ecemis, Ali Serdar;Korkmaz, Hasan Husnu;Dere, Yunus
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.343-353
    • /
    • 2021
  • In this study, in order to improve the seismic performance of existing reinforced concrete (RC) framed structures, various external attachment of corner steel frame configurations was considered as a user-friendly retrofitting method. The external steel frame is designed to contribute to the lateral stiffness and load carrying capacity of the existing RC structure. A six-story building was taken into account. Four different external corner steel frame configurations were suggested in order to strengthen the building. The 3D models of the building with suggested retrofitting steel frames were developed within ABAQUS environment using solid finite elements and analyzed under horizontal loadings nonlinearly. Horizontal top displacement vs loading curves were obtained to determine the overall performance of the building. Contributions of steel and RC frames to the carried loads were computed individually. Load/capacity ratios for the ground floor columns were presented. In the study, 3D rendered images of the building with the suggested retrofits are created to better visualize the real effect of the retrofit on the final appearance of the façade of the building. The analysis results have shown that the proposed external steel frame retrofit configurations increased the lateral load carrying capacity and lateral stiffness and can be used to improve the seismic performance of RC framed buildings.