• 제목/요약/키워드: RC building structures

검색결과 351건 처리시간 0.022초

RC 구조물의 Eddy Current 기반 철근부식 감지 센서에 관한 실험적 연구 (Experimental Study on Eddy Current based-on Corrosion Detection Sensor for RC structure)

  • 양현민;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.260-261
    • /
    • 2019
  • Corrosion of rebar embedded reinforced concrete is the main cause of collapse and degradation of reinforced concrete structure that many researches are recently focused on these works. Methods of evaluating rebar corrosion are divided into physical and electrochemical methods. However, the result of Conventional methods are less reliable due to effect of internal and external environments. In this study, rebar corrosion detection sensor for embedded rebar of RC structures is evaluated through immersion test in NaCl solustion for 160hours. From the results, Rebar corrosion was ongoing and corrosion products are produced on rebar surface. The voltage is decreased as amount of corrosion production increased.

  • PDF

Influence of concurrent horizontal and vertical ground excitations on the collapse margins of non-ductile RC frame buildings

  • Farsangi, E. Noroozinejad;Yang, T.Y.;Tasnimi, A.A.
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.653-669
    • /
    • 2016
  • Recent earthquakes worldwide show that a significant portion of the earthquake shaking happens in the vertical direction. This phenomenon has raised significant interests to consider the vertical ground motion during the seismic design and assessment of the structures. Strong vertical ground motions can alter the axial forces in the columns, which might affect the shear capacity of reinforced concrete (RC) members. This is particularly important for non-ductile RC frames, which are very vulnerable to earthquake-induced collapse. This paper presents the detailed nonlinear dynamic analysis to quantify the collapse risk of non-ductile RC frame structures with varying heights. An array of non-ductile RC frame architype buildings located in Los Angeles, California were designed according to the 1967 uniform building code. The seismic responses of the architype buildings subjected to concurrent horizontal and vertical ground motions were analyzed. A comprehensive array of ground motions was selected from the PEER NGA-WEST2 and Iran Strong Motions Network database. Detailed nonlinear dynamic analyses were performed to quantify the collapse fragility curves and collapse margin ratios (CMRs) of the architype buildings. The results show that the vertical ground motions have significant impact on both the local and global responses of non-ductile RC moment frames. Hence, it is crucial to include the combined vertical and horizontal shaking during the seismic design and assessment of non-ductile RC moment frames.

Seismic performance of RC buildings subjected to past earthquakes in Turkey

  • Inel, Mehmet;Meral, Emrah
    • Earthquakes and Structures
    • /
    • 제11권3호
    • /
    • pp.483-503
    • /
    • 2016
  • This study aims to evaluate seismic performance of existing low and mid-rise reinforced concrete buildings by comparing their displacement capacities and displacement demands under selected ground motions experienced in Turkey as well as demand spectrum provided in 2007 Turkish Earthquake Code for design earthquake with 10% probability of exceedance in 50 years for soil class Z3. It should be noted that typical residential buildings are designed according to demand spectrum of 10% probability of exceedance in 50 years. Three RC building sets as 2-, 4- and 7-story, are selected to represent reference low-and mid-rise buildings located in the high seismicity region of Turkey. The selected buildings are typical beam-column RC frame buildings with no shear walls. The outcomes of detailed field and archive investigation including approximately 500 real residential RC buildings established building models to reflect existing building stock. Total of 72 3-D building models are constructed from the reference buildings to include the effects of some properties such as structural irregularities, concrete strength, seismic codes, structural deficiencies, transverse reinforcement detailing, and number of story on seismic performance of low and mid-rise RC buildings. Capacity curves of building sets are obtained by nonlinear static analyses conducted in two principal directions, resulting in 144 models. The inelastic dynamic characteristics are represented by "equivalent" Single-Degree-of- Freedom (ESDOF) systems using obtained capacity curves of buildings. Nonlinear time history analysis is used to estimate displacement demands of representative building models idealized with (ESDOF) systems subjected to the selected ground motion records from past earthquakes in Turkey. The results show that the significant number of pre-modern code 4- and 7-story buildings exceeds LS performance level while the modern code 4- and 7-story buildings have better performances. The findings obviously indicate the existence of destructive earthquakes especially for 4- and 7-story buildings. Significant improvements in the performance of the buildings per modern code are also obvious in the study. Almost one third of pre-modern code buildings is exceeding LS level during records in the past earthquakes. This observation also supports the building damages experienced in the past earthquake events in Turkey.

Seismic response of RC structures rehabilitated with SMA under near-field earthquakes

  • Shiravand, M.R.;Khorrami Nejad, A.;Bayanifar, M.H.
    • Structural Engineering and Mechanics
    • /
    • 제63권4호
    • /
    • pp.497-507
    • /
    • 2017
  • During recent earthquakes, a significant number of concrete structures suffered extensive damage. Conventional reinforced concrete structures are designed for life-time safety that may see permanent inelastic deformation after severe earthquakes. Hence, there is a need to utilize adequate materials that have the ability to tolerate large deformation and get back to their original shape. Super-elastic shape memory alloy (SMA) is a smart material with unique properties, such as the ability to regain undeformed shape by unloading or heating. In this research, four different stories (three, five, seven and nine) of reinforced concrete (RC) buildings have been studied and subjected to near-field ground motions. For each building, two different types of reinforcement detailing are considered, including (1) conventional steel reinforcement (RC frame) and (2) steel-SMA reinforcement (SMA RC frame), with SMA bars being used at plastic zones of beams and steel bars in other regions. Nonlinear time history analyses have been performed by "SeismoStruct" finite element software. The results indicate that the application of SMA materials in plastic hinge regions of the beams lead to reduction of the residual displacement and consequently post-earthquake repairs. In general, it can be said that shape memory alloy materials reduce structural damage and retrofit costs.

Limit states of RC structures with first floor irregularities

  • Favvata, Maria J.;Naoum, Maria C.;Karayannis, Chris G.
    • Structural Engineering and Mechanics
    • /
    • 제47권6호
    • /
    • pp.791-818
    • /
    • 2013
  • The seismic performance of reinforced concrete (RC) frame structures with irregularities leading to soft first floor is studied using capacity assessment procedures. The soft first story effect is investigated for the cases: (i) slab-column connections without beams at the first floor, (ii) tall first story height and (iii) pilotis type building (open ground story). The effects of the first floor irregularity on the RC frame structure performance stages at global and local level (limit states) are investigated. Assessment based on the Capacity Spectrum Method (ATC-40) and on the Coefficient Method (FEMA 356) is also examined. Results in terms of failure modes, capacity curves, interstory drifts, ductility requirements and infills behaviour are presented. From the results it can be deduced that the global capacity of the structures is decreased due to the considered first floor morphology irregularities in comparison to the capacities of the regular structure. An increase of the demands for interstory drift is observed at the first floor level due to the considered irregularities while the open ground floor structure (pilotis type) led to even higher values of interstory drift demands at the first story. In the cases of tall first story and slab-column connections without beams soft-story mechanisms have also been observed at the first floor. Rotational criteria (EC8-part3) showed that the structure with slab-column connections without beams exhibited the most critical response.

RC조 건축물의 구조시스템에 따른 수직진동 전달 특성 비교 (Characteristics of Vertical Vibration Transfer according to RC Structure Systems)

  • 전호민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.196-201
    • /
    • 2006
  • In general, the vertical vibration problems for strength of members and serviceability of building structures are not considered in structural design process, but the prediction of the vertical vibration is very important and essential to structural design process. This study aims to investigate the characteristics of vertical vibration in terms of the transfer of horizontal directions on the rahmen building structures and the shear wall building structures. In order to examine the characteristics of vertical vibration, the modal test and the heel-drop excitation experiments were conducted several times on the two type building structures. The results from the experiments are analyzed and compared with the results. The results of this study suggest that the characteristics of vortical vibration transfer in horizontal way are effected from the fundamental frequency of the slabs and excitation forces and are effected the shear wall on the path of the vibration transfer.

  • PDF

The investigation of seismic performance of existing RC buildings with and without infill walls

  • Dilmac, Hakan;Ulutas, Hakan;Tekeli, Hamide;Demir, Fuat
    • Computers and Concrete
    • /
    • 제22권5호
    • /
    • pp.439-447
    • /
    • 2018
  • One of the important factors is the infill walls in the change of the structural rigidity, ductility, dynamic and static characteristics of the structures. The infill walls are not generally included in numerical analysis of reinforced concrete (RC) structural system due to lack of suitable theory and the difficulty of calculating the recommended models. In seismic regions worldwide, the residential structures are generally RC buildings with infill wall. Therefore, understanding the contribution of the infill walls to seismic performance of buildings may have a vital importance. This paper investigates the effects of infill walls on seismic performance of the existing RC residential buildings by considering requirements of the Turkish Earthquake Code (TEC). Seismic performance levels of residential RC buildings with and without walls in high-hazard zones were determined according to the nonlinear procedure given in the code. Pushover curves were obtained by considering the effect of masonry infill walls on seismic performance of RC buildings. The analysis results showed that the infill walls beneficially effected to the rigidity, roof displacements and seismic performance of the building.

비틀림비정형을 갖는 건물의 비선형 시간이력해석 (Non-linear time history analysis of building with torsional irregularity)

  • 이한선;고동우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.219-222
    • /
    • 2005
  • Many RC building structures of multiple uses constructed in Korea have the irregularities of torsion and soft story at bottom stories. A typical irregular building was selected as prototype and shaking table tests were performed to investigate the seismic performance of this building. The objective of this study is to evaluate the correlation between the experimental and analytical responses of this irregular building structure subjected to the earthquake excitation by using OpenSees(Open System for Earthquake Engineering Simulation). The results of analyses simulate well the behavior of the building having torsional irregularity and weak stories.

  • PDF

Empirical seismic vulnerability probability prediction model of RC structures considering historical field observation

  • Si-Qi Li;Hong-Bo Liu;Ke Du;Jia-Cheng Han;Yi-Ru Li;Li-Hui Yin
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.547-571
    • /
    • 2023
  • To deeply probe the actual earthquake level and fragility of typical reinforced concrete (RC) structures under multiple intensity grades, considering diachronic measurement building stock samples and actual observations of representative catastrophic earth shocks in China from 1990 to 2010, RC structures were divided into traditional RC structures (TRCs) and bottom reinforced concrete frame seismic wall masonry (BFM) structures, and the empirical damage characteristics and mechanisms were analysed. A great deal of statistics and induction were developed on the historical experience investigation data of 59 typical catastrophic earthquakes in 9 provinces of China. The database and fragility matrix prediction model were established with TRCs of 4,122.5284×104 m2 and 5,844 buildings and BFMs of 5,872 buildings as empirical seismic damage samples. By employing the methods of structural damage probability and statistics, nonlinear prediction of seismic vulnerability, and numerical and applied functional analysis, the comparison matrix of actual fragility probability prediction of TRC and BFM in multiple intensity regions under the latest version of China's macrointensity standard was established. A novel nonlinear regression prediction model of seismic vulnerability was proposed, and prediction models considering the seismic damage ratio and transcendental probability parameters were constructed. The time-varying vulnerability comparative model of the sample database was developed according to the different periods of multiple earthquakes. The new calculation method of the average fragility prediction index (AFPI) matrix parameter model has been proposed to predict the seismic fragility of an areal RC structure.

Seismic behavior of RC building by considering a model for shear wall-floor slab connections

  • Soleimani-Abiat, Mehdi;Banan, Mohammad-Reza
    • Computers and Concrete
    • /
    • 제16권3호
    • /
    • pp.381-397
    • /
    • 2015
  • Connections are the most important regions in a structural system especially for buildings in seismic zones. In R.C. structures due to large dimensions of members and lack of cognition of the stress distribution in a connection, reaching a comprehensive understanding of the connection behaviors becomes more complicated. The shear wall-to-floor slab connections in lateral load resisting systems have a potential weakness in transferring loads from slabs to shear walls which might change the path of load transformation to shear walls. This paper tries to investigate the effects of seismic load combinations on the behavior of slabs at their connection zones with the shear walls. These connection zones naturally are the most critical regions of the slabs in RC buildings. The investigation carried on in a simulated environment by considering three different structures with different shear wall layout. The final results of our study reveal that layout of shear walls in a building significantly affects the magnification of forces developed at the shear wall-floor slab connections.