• 제목/요약/키워드: RC beam-column joints

검색결과 127건 처리시간 0.02초

콘크리트 기둥-강재 보 외부 접합부의 내진성능(II 강도 및 변형) (Seismic Response of Exterior RC Column-to-Steel Beam Connections (II. Strength and Deformation))

  • 조순호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.283-289
    • /
    • 2000
  • The panel shear and bearing strengths determining the seismic resistance of reinforced concrete column-to-steel beam connections are predicted by various methods for four previously tested exterior beam-column joints. The analytical approach to model the joint deformation is also examined. Several analyses incorporating the deformations of panel shear and bearing in the joint are demonstrated using a analyses incorporating the deformations of panel shear and bearing in the joint are demonstrated using a fairly simple connection model in the commercial packages such as Drain2dx and IDARC. The strength prediction results indicated that the ASCE method with the modifcation of the comprssion strut contribution is th most accurate. It is also considered that the analytical model presented including the joint deformation can be used for the overall analysis

  • PDF

톨러런스기반 플레이트 접합 장치를 사용한 고중량 RC보의 설치 성능 (Erection Capability of Heavy Precast Frames with Metal Plates using Wet Concrete for Tolerance)

  • 홍원기;응엔 반 티엔;응엔 만 컹;쿤디마나 에릭
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.12-13
    • /
    • 2021
  • Methods for the manufacture, erection, and assembly of heavy frame modules were proposed. Interferences among precast members were prevented by using bolted metal plates for dry precast beam-to-column joints during assembly with a clearance for tolerance implementing grouted concrete filler plates instead of metal filler plates. Clearances for tolerances were provided to avoid conflictions among components during erection phases. These gaps were, then, grouted by high-strength mortar. The constructability of new connections of a beam-to-column joint using bolted metal plates for precast structures was examined using a full-scale assembly test in which practical observations indicated that members could be aligned and placed accurately in both horizontal and vertical directions, leading to a fast and convenient assembling. Bolt holes of the endplate were properly aligned using couplers with 30 mm fastened length embedded in the columns. The assembly test demonstrated the erection safety and structural stability of the proposed joints that were without filler plates when they were subjected to heavy loads at the time of their erection. The facile and rapid assembly of precast beam-to-column connections with a 30 mm tolerance was observed. The proposed assembly method is rapid, sustainable, and resilient, replacing the conventional methods of concrete frame construction, offering a connection that can be used in constructing infrastructure, such as buildings and pipe-rack frames.

  • PDF

정적실험을 통한 조적채움벽체가 비내진상세 RC 골조의 내진성능에 미치는 영향 평가 (An Experimental Study on the Influence of Masonry InFilled Walls on the Seismic Performance of Reinforced Concrete Frames with Non-seismic Details)

  • 김경민;천주현;백은림;오상훈;황철성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권3호
    • /
    • pp.114-120
    • /
    • 2017
  • 본 논문에서는 국내 비내진상세 조적채움벽 RC 골조의 내진성능을 파악하기 위하여 실규모 크기의 비내진상세 조적채움벽 RC 골조를 대상으로 정적실험을 실시하였으며, 기존 비내진상세 RC 골조 의 정적 실험결과와의 비교 분석을 통하여 조적채움벽체가 RC 골조의 내진성능에 미치는 영향에 대하여 평가하였다. 실험 결과. 조적채움벽 RC 골조 실험체는 조적채움벽체에 의한 압축력으로 기둥, 보, 접합부 등 골조 전체에 균열 등의 손상이 발생하였으며, 접합부 전단균열이 벌어지고 철근이 노출되면서 취성 파괴되었다. 한편, 조적체움벽 RC 골조 실험체의 수평하중과 층간변형각 관계는 벽체 슬라이딩 균열, 기둥 균열 등으로 강성이 저하되었으며, 철근 항복이후 최대 내력에 도달하고 접합부 균열의 확대, 철근 노출 등으로 내력이 최대 내력의 40% 정도로 저하되었다. 조적채움벽체로 인하여 기둥 상 하단 및 접합부에만 집중되던 손상이 기둥, 보, 접합부 등 골조 전체에 분산되어 발생하였으며, 기둥의 전단균열이 아닌 접합부의 전단균열의 확대로 최종 파괴되었다. 또한, 조적채움벽체로 인하여 RC 골조의 강성은 12.42배, 내력은 3.63배 증가한 반면에, 강성 증가에 따라 최대 내력 시의 층간변형각은 0.18배, 파괴시의 변형은 절반 이하로 감소하였다.

Experimental research on seismic behavior of novel composite RCS joints

  • Men, Jinjie;Guo, Zhifeng;Shi, Qingxuan
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.209-221
    • /
    • 2015
  • Results from an experimental study on the seismic response of six composite reinforced concrete column-to-steel beam interior joints are presented. The primary variable investigated is the details in the joint. For the basic specimen, the main subassemblies of the beam and column are both continuous, and the steel beam flanges extended to the joint are partly cut off. Transverse beam, steel band plates, cove plates, X shape reinforcement bars and end plates are used in the other five specimens, respectively. After the joint steel panel yielded, two failure modes were observed during the test: local failure in Specimens 1, 2 and 4, shear failure in Specimens 3, 5 and 6. Specimens 6, 3, 5 and 4 have a better strength and deformation capacity than the other two specimens for the effectiveness of their subassemblies. For Specimens 2 and 4, though the performance of strength degradation and stiffness degradation are not as good as the other four specimens, they all have excellent energy dissipation capacity comparing to the RC joint, or the Steel Reinforced Concrete (SRC) joint. Based on the test result, some suggestions are presented for the design of composite RCS joint.

Cyclic performance of RC beam-column joints enhanced with superelastic SMA rebars

  • Ghasemitabar, Amirhosein;Rahmdel, Javad Mokari;Shafei, Erfan
    • Computers and Concrete
    • /
    • 제25권4호
    • /
    • pp.293-302
    • /
    • 2020
  • Connections play a significant role in strength of structures against earthquake-induced loads. According to the post-seismic reports, connection failure is a cause of overall failure in reinforced concrete (RC) structures. Connection failure results in a sudden increase in inter-story drift, followed by early and progressive failure across the entire structure. This article investigated the cyclic performance and behavioral improvement of shape-memory alloy-based connections (SMA-based connections). The novelty of the present work is focused on the effect of shape memory alloy bars is damage reduction, strain recoverability, and cracking distribution of the stated material in RC moment frames under seismic loads using 3D nonlinear static analyses. The present numerical study was verified using two experimental connections. Then, the performance of connections was studied using 14 models with different reinforcement details on a scale of 3:4. The response parameters under study included moment-rotation, secant stiffness, energy dissipation, strain of bar, and moment-curvature of the connection. The connections were simulated using LS-DYNA environment. The models with longitudinal SMA-based bars, as the main bars, could eliminate residual plastic rotations and thus reduce the demand for post-earthquake structural repairs. The flag-shaped stress-strain curve of SMA-based materials resulted in a very slight residual drift in such connections.

콘크리트 기둥-강재 보 외부 접합부의 내진성능(I. 실험) (Seismic Response of Exterior RC Column-to-Steel Beam Connections (I. Experiment))

  • 조순호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.275-282
    • /
    • 2000
  • The seismic behavior of moment connections consisting of reinforced concrete columns and steel beams is investigated based on four 2/3 scale tests of exterior beam-column joints subject to reversed cyclic loading. The major test parameters were the number of hoops the isolated concrete contribution and the use of headed studs in the joint regions between columns and beams. Their influence on the seismic response of the connections is presented and compared. Among them the CF3 specimen containing two hoops each in the joint and column regions above and below exhibited the most favourable hysteretic response. This indicates that this type of joint details can be used in the low seismic areas such as Korea.

  • PDF

철근콘크리트 특수모멘트골조의 보-기둥 접합부 실험체의 내진성능평가 (Seismic Evaluation of Beam-Column Joint Specimens of RC Special Moment Frames)

  • 이기학;석근영;정찬우;신영식;강주원
    • 한국공간구조학회논문집
    • /
    • 제8권2호
    • /
    • pp.85-93
    • /
    • 2008
  • 본 연구는 철근콘크리트 특수모멘트골조(SMF)내 보-기둥 접합부의 비탄성 회전능력에 대한 연구결과를 조사한 것이다. 모든 실험체들은 ACI 318-02에 정의된 설계 및 세부지침에 따라 특수모멘트골조로 분류되었다. AISC(2002)기준에서 모멘트골조의 접합부에 대한 내진성능의 만족 기준을 이용하여 보-기둥 접합부를 평가하였다. 총 39개의 실험체들에 대해 자세하게 조사되었다. 특수모멘트골조에 대한 내진설계기준을 만족하는 대부분의 접합부들은 3%의 소성회전까지 휨강도의 심각한 감소 없이 연성이 유지되었다. 이는 특수모멘트골조 접합부들에 대한 엄격한 콘크리트 내진설계 규정에 따른 것으로 조사되었다. 접합부내의 횡방향 보의 존재는 보-기둥 접합부의 구속력과 전단에 대한 저항성을 증가시킨 것으로 조사되었다 접합부 전단응력에 대한 ACI 328-02 제한조건을 만족하는 모든 특수모멘트골조의 접합부들은 요구되는 내진성능을 만족하는 것으로 나타났다.

  • PDF

Numerical analysis of under-designed reinforced concrete beam-column joints under cyclic loading

  • Sasmal, Saptarshi;Novak, Balthasar;Ramanjaneyulu, K.
    • Computers and Concrete
    • /
    • 제7권3호
    • /
    • pp.203-220
    • /
    • 2010
  • In the present study, exterior beam-column sub-assemblage from a regular reinforced concrete (RC) building has been considered. Two different types of beam-column sub-assemblages from existing RC building have been considered, i.e., gravity load designed ('GLD'), and seismically designed but without any ductile detailing ('NonDuctile'). Hence, both the cases represent the under-designed structure at different time frame span before the introduction of ductile detailing. For designing 'NonDuctile' structure, Eurocode and Indian Standard were considered. Non-linear finite element (FE) program has been employed for analysing the sub-assemblages under cyclic loading. FE models were developed using quadratic concrete brick elements with embedded truss elements to represent reinforcements. It has been found that the results obtained from the numerical analysis are well corroborated with that of experimental results. Using the validated numerical models, it was proposed to correlate the energy dissipation from numerical analysis to that from experimental analysis. Numerical models would be helpful in practice to evaluate the seismic performance of the critical sub-assemblages prior to design decisions. Further, using the numerical studies, performance of the sub-assemblages with variation of axial load ratios (ratio is defined by applied axial load divided by axial strength) has been studied since many researchers have brought out inconsistent observations on role of axial load in changing strength and energy dissipation under cyclic load.

Cyclic tests on RC joints retrofitted with pre-stressed steel strips and bonded steel plates

  • Yu, Yunlong;Yang, Yong;Xue, Yicong;Wang, Niannian;Liu, Yaping
    • Structural Engineering and Mechanics
    • /
    • 제75권6호
    • /
    • pp.675-684
    • /
    • 2020
  • An innovative retrofit method using pre-stressed steel strips and externally-bonded steel plates was presented in this paper. With the aim of exploring the seismic performance of the retrofitted RC interior joints, four 1/2-scale retrofitted joint specimens together with one control specimen were designed and subjected to constant axial compression and cyclic loading, with the main test parameters being the volume of steel strips and the existence of externally-bonded steel plates. The damage mechanism, force-displacement hysteretic response, force-displacement envelop curve, energy dissipation and displacement ductility ratio were analyzed to investigate the cyclic behavior of the retrofitted joints. The test results indicated that all the test specimens suffered a typical shear failure at the joint core, and the application of externally-bonded steel plates and that of pre-stressed steel strips could effectively increase the lateral capacity and deformability of the deficient RC interior joints, respectively. The best cyclic behavior could be found in the deficient RC interior joint retrofitted using both externally-bonded steel plates and pre-stressed steel strips due to the increased lateral capacity, displacement ductility and energy dissipation. Finally, based on the test results and the softened strut and tie model, a theoretical model for determining the shear capacity of the retrofitted specimens was proposed and validated.

Experimental study on shear capacity of SRC joints with different arrangement and sizes of cross-shaped steel in column

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.267-287
    • /
    • 2016
  • The seismic performance of the ordinary steel reinforced concrete (SRC) columns has no significant improvement compared to the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type shaped steel were put forward on this background, and they were named as enlarging cross-shaped steel and diagonal cross-shaped steel for short. The seismic behavior and carrying capacity of new-type SRC columns have been researched theoretically and experimentally, while the shear behavior remains unclear when the new-type columns are joined onto SRC beams. This paper presents an experimental study to investigate the shear capacity of new-type SRC joints. For this purpose, four new-type and one ordinary SRC joints under low reversed cyclic loading were tested, and the failure patterns, load-displacement hysteretic curves, joint shear deformation and steel strain were also observed. The ultimate shear force of joint specimens was calculated according to the beam-end counterforce, and effects of steel shape, load angel and structural measures on shear capacity of joints were analyzed. The test results indicate that: (1) the new-type SRC joints display shear failure pattern and has higher shear capacity than the ordinary one; (2) the oblique specimens have good bearing capacity if designed reasonably; and (3) the two proposed construction measures have little effect on the shear capacity of SRC joints embedded with diagonal cross-shaped steel. Based on the mechanism observed from the test, the formulas for calculating ultimate shear capacity considering the main factors (steel web, stirrup and axial compression ratio) were derived, and the calculated results agreed well with the experimental and simulated data.