• Title/Summary/Keyword: RC Member

Search Result 276, Processing Time 0.023 seconds

Evaluation on the Bending Behavior After Yield of RC Beam by Using Image Processing Method(II): Focused on the Tensile Part (영상 분석 기법을 이용한 RC 부재의 항복 후 휨 거동 분석(II): 인장부를 중심으로)

  • Kim, Kun-Soo;Park, Ki-Tae;Woo, Tae-Ryeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.47-53
    • /
    • 2022
  • As the limit state design method is applied as a method of designing concrete structures, the ultimate state is considered in the analysis or design. In fact, when the reinforced concrete member bears tensile force, the force is transmitted from the rebar to the concrete, and the structure bears the tensile force to the ultimate state even after yield. Therefore, the accurate evaluation of behavior after yield, it is necessary to study the tension stiffening effect after yield of the flexural member. In this study, a 4-point bending test was conducted on the RC simple beam having a rectangular cross section of the double reinforcement, and the behavior of the member was analyzed in detail using the image analysis method. Using the analysis results, the estimation formula for the tension stiffening effect after yield was proposed, and the applicability of this was verified through the experimental results of existing study. The difference between the ultimate strain and the yield strain representing the ductile behavior of the member is similar to the experimental results. The prediction of the proposed formula is relatively accurate.

Development of Post-processing Modules in an Integrated System for Reinforced Concrete Structures Using Object-Oriented Techniques (객체지향 기법을 이용한 RC통합 구조설계 시스템의 후처리 모듈 개발)

  • 이진우;천진호;김우범;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.352-361
    • /
    • 1998
  • The post-processing modules are parts of an integrated system for reinforced concrete structures. This modules are composed of two modules: member design module and calculation report module. The purpose of this paper is to develope modules that increase efficiency and usefulness of an integrated system used reinforced concrete structures design. The development of post-processing modules is necessary for user to design reinforced concrete structures conveniently and quickly. This modules are connected with central database for the benefit of storing amount of input/output data and being used system with little effort. Post-processing modules used Object-Oriented concepts and techniques include identity, classification, polymorphism, and inheritance. Member design module automatically converts no good members into satisfied members by changing section size or reinforcement bar arrangement. This module can be operated both independent member design modules with user input and a part of integrated system with database input. If user operates member design module, calculation report module is created automatically.

  • PDF

Experimental and analytical study on RC beam reinforced with SFCB of different fiber volume ratios under flexural loading

  • Lin, Jia-Xiang;Cai, Yong-Jian;Yang, Ze-Ming;Xiao, Shu-Hua;Chen, Zhan-Biao;Li, Li-Juan;Guo, Yong-Chang;Wei, Fei-Fei
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.133-145
    • /
    • 2022
  • Steel fiber composite bar (SFCB) is a novel type of reinforcement, which has good ductility and durability performance. Due to the unique pseudo strain hardening tensile behavior of SFCB, different flexural behavior is expected of SFCB reinforced concrete (SFCB-RC) beams from traditional steel bar reinforced concrete (S-RC) beams and FRP bar reinforced concrete (F-RC) beams. To investigate the flexural behavior of SFCB-RC beam, four points bending tests were carried out and different flexural behaviors between S/F/SFCB-RC beams were discussed. An flexural analytical model of SFCB-RC beams is proposed and proved by the current and existing experimental results. Based on the proposed model, the influence of the fiber volume ratio R of the SFCB on the flexural behavior of SFCB-RC beams is discussed. The results show that the proposed model is effective for all S/F/SFCB-RC flexural members. Fiber volume ratio R is a key parameter affecting the flexural behavior of SFCB-RC. By controlling the fiber volume ratio of SFCB reinforcements, the flexural behavior of the SFCB-RC flexural members such as bearing capacity, bending stiffness, ductility and repairability of SFCB-RC structures can be designed.

An experimental and numerical investigation on the effect of longitudinal reinforcements in torsional resistance of RC beams

  • Khagehhosseini, A.H.;Porhosseini, R.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.247-263
    • /
    • 2013
  • It is evident that torsional resistance of a reinforced concrete (RC) member is attributed to both concrete and steel reinforcement. However, recent structural design codes neglect the contribution of concrete because of cracking. This paper reports on the results of an experimental and numerical investigation into the torsional capacity of concrete beams reinforced only by longitudinal rebars without transverse reinforcement. The experimental investigation involves six specimens tested under pure torsion. Each specimen was made using a cast-in-place concrete with different amounts of longitudinal reinforcements. To create the torsional moment, an eccentric load was applied at the end of the beam whereas the other end was fixed against twist, vertical, and transverse displacement. The experimental results were also compared with the results obtained from the nonlinear finite element analysis performed in ANSYS. The outcomes showed a good agreement between experimental and numerical investigation, indicating the capability of numerical analysis in predicting the torsional capacity of RC beams. Both experimental and numerical results showed a considerable torsional post-cracking resistance in high twist angle in test specimen. This post-cracking resistance is neglected in torsional design of RC members. This strength could be considered in the design of RC members subjected to torsion forces, leading to a more economical and precise design.

Quantitative Lateral Drift Control of RC Tall Frameworks using Dynamic Displacement Sensitivity Analysis (동적 변위민감도 해석을 이용한 고층 RC 골조구조물의 정량적인 횡변위 제어 방안)

  • Lee, Han-Joo;Kim, Ho-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.103-110
    • /
    • 2006
  • This study presents a technique to control quantitatively lateral drift of RC tall frameworks subject to lateral loads. To this end, lateral drift constraints are established by introducing approximation concept that preserves the generality of the mathematical programming and can efficiently solve large scale problems. Also the relationships of sectional properties are established to reduce the number of design variables and resizing technique of member is developed under the 'constant-shape' assumption. Specifically, the methodology of dynamic displacement sensitivity analysis is developed to formulate the approximated lateral displacement constraints. Three types of 10 and 50 story RC framework models are considered to illustrate the features of dynamic stiffness-based optimal design technique proposed in this study.

  • PDF

Distributed crack sensors featuring unique memory capability for post-earthquake condition assessment of RC structures

  • Chen, Genda;McDaniel, Ryan;Sun, Shishuang;Pommerenke, David;Drewniak, James
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.141-158
    • /
    • 2005
  • A new design of distributed crack sensors based on the topological change of transmission line cables is presented for the condition assessment of reinforced concrete (RC) structures during and immediately after an earthquake event. This study is primarily focused on the performance of cable sensors under dynamic loading, particularly a feature that allows for some "memory" of the crack history of an RC member. This feature enables the post-earthquake condition assessment of structural members such as RC columns, in which the earthquake-induced cracks are closed immediately after an earthquake event due to gravity loads, and are visually undetectable. Factors affecting the onset of the feature were investigated experimentally with small-scale RC beams under cyclic loading. Test results indicated that both crack width and the number of loading cycles were instrumental in the onset of the memory feature of cable sensors. Practical issues related to dynamic acquisition with the sensors are discussed. The sensors were proven to be fatigue resistant from shake table tests of RC columns. The sensors continued to show useful performance after the columns can no longer support additional loads.

Performance evaluation of different strengthening measures for exterior RC beam-column joints under opening moments

  • Dar, M. Adil;Subramanian, N.;Pande, Sumeet;Dar, A.R.;Raju, J.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.243-254
    • /
    • 2020
  • Devastating RC structural failures in the past have identified that the behavior of beam-column joints is more critical and significantly governs the global structural response under seismic loading. The congestion of reinforcement at the beam-column joints with other constructional difficulties has escalated the attention required for strengthening RC beam-column joints. In this context, numerous studies have been carried out in the past, which mainly focused on jacketing the joints with different materials. However, there is no comparative study of different approaches used to strengthen RC beam-column joints, from efficiency and cost perspective. This paper presents a detailed investigation carried out to study the various strengthening schemes of exterior RC beam-column joints, viz., steel fiber reinforcement, carbon fiber reinforced polymer (CFRP) strengthening, steel haunch strengthening, and confining joint reinforcement. The effectiveness of each scheme was evaluated experimentally. These specimens were tested under horizontal loading that produced opening moments on the joints and their behavior was studied with emphasis on strength, displacement ductility, stiffness, and failure mechanism. Special attention was given to the study of crack-width.

Bond Capacity of U-shaped reinforcement for bond splitting prevention in RC beams (고강도 횡 보강근을 적용한 RC보의 정량적인 부착강도 평가)

  • Yoon, Hye-Sun;Kim, Young-Sik;Yang, Wan-Su;Beak, Sung-Cheol;Kim, Kil-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.105-108
    • /
    • 2008
  • Although the research of high strength materials is in process briskly in the inside and outside of the country, in south korea, the research of high strength materials is insufficiency. Generally shear resistance of RC beam is influenced dominantly by amount of shear-reinforcing bars($p_w$) and yied strength($f_{wy}$). Therefore, I come to the conclusion that if use shear reinforced bar with shear reinforced bar, it leads to decrease of the quantity of shear reinforced bar and effects on the security of shear-restraint force of member. This study experimented with not only the mixture of high strength-reinforced bar and U-shaped reinforcement normal strength -reinforced bar devises efficient improvement, but also it incites improvement of bond capacity and carries out an experimental study for improvement of member resisting force, finally it evaluates bond capacity quantitatively on the lines of main reinforcement the restraint method.

  • PDF

Correlation Between Crack Widths and Deflection in Reinforced Concrete Beams (철근콘크리트 보의 균열 폭과 처짐 관계)

  • Kang, Ju-Oh;Kim, Kang-Su;Lee, Deuck-Hang;Lee, Seung-Bea
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.184-192
    • /
    • 2010
  • The member deflection is one of the most important considerations for the serviceability evaluation of reinforced concrete (RC) structures, and the concept of the effective moment of inertia has been generally used for its estimation. However, the actual service load applied on an existing RC beam may not be easily obtained, for which the estimation of beam deflection by existing methods can be difficult to obtain. Therefore, based on the correlation between cracks and deflection in a RC beam, this study proposed a method to estimate the deflection of RC beams directly from the condition of cracks not using the actual loads acting on the member as its input data. The proposed method extensively utilized the relationships among sums of crack widths, average strains, and curvatures, and modification factors obtained from regression analysis were also introduced to improve its accuracy. The deflections of members were successfully estimated by the proposed method independent from applied loads, which was also easy to apply compared to the existing methods based on the effective moment of inertia.

Development and Application of Anti-Corrosive Steel Using Electro-Deposition of Sea Water (2)- Evaluation of Application Rebar with Electro-Deposition Using Sea Water (해수전착 코팅을 이용한 내부식성 철근의 개발 및 적용성에 대한 연구 (2) -해수전착된 구조용 철근의 적용성 평가)

  • Kwon, Seung Jun;Lee, Sang Min;Park, Sang Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.155-162
    • /
    • 2012
  • When RC (Reinforced Concrete) structures are exposed to sea water, steel corrosion can occur and this leads a degradation of structural performance. Referring the electro-deposition system with sea water from the 1st step research, durability and structural performance are evaluated in coated steel and RC members containing it in the 2nd research. In the durability performance test, Half Cell Potential test is performed and the coated steel is evaluated to have the high resistance to corrosion, which shows only 35% of corrosion velocity in normal (bare) steel. In the structural performance test, tensile strength, adhesive strength, and flexural/shear in RC member are performed. For the electro-deposit coated steel, increasing ratios of 3.2% and 8.8% are evaluated in the test of tensile strength and adhesive strength, respectively. For the structural test in RC member, there is no big difference between RC members with coated and non-coated steel in ultimate load and failure pattern It is evaluated that the chemical compound with $CaCO_3$ and $Mg(OH)_2$ from electro-deposition causes slightly increased structural performance. The electro-deposit coated steel can be more widely applied after performance verification from several tests like fatigue, resistance to impact, and long term-submerging test.