• 제목/요약/키워드: RC Member

검색결과 276건 처리시간 0.024초

설계부재력에 대한 지진하중의 방향 및 직교성 영향 (Directional and Orthogonal Effects of Seismic Loads on Design Member Forces)

  • 고동우;정성욱;이한선
    • 한국지진공학회논문집
    • /
    • 제9권3호
    • /
    • pp.51-58
    • /
    • 2005
  • 최근 우리나라에서는 건축적 또는 사회적 요구로 비정형 고층 RC건물이 급증하고 있으나, 이와 같은 건물을 내진설계하는데 요구되는 지진의 방향성과 직교성을 적응하기 위한 구체적인 방법이 제시되어 있지 않아 설계자들이 설계하는데 어려움이 있다. 따라서, 본 논문에서는 우리나라에서 실제 건설된 비정형고층 RC건물을 스펙트럼해석법과 시간이력해석법에 따라 SAP2000을 사용하여 동적해석을 수행한 후, 하부골조 기둥의 설계력을 비교함으로써 주축의 설정과 지진의 방향성을 고려하는 것이 설계력에 미치는 영향, 그리고 방향성과 직교성을 모두 만족시킬 수 있는 방법에 대해 연구하였다. 연구결과 내린 결론은 다음과 같다. 1) 지진에 직각방향 전단력이 발생하지 않는 방향을 주축으로 정의하여 설계부재력을 구하면, 동적밑면전단력 보정계수가 감소하기 때문에 X, Y축을 주축으로 정하여 설계부재력 구하였을 때보다 설계부재력이 $15\%$정도 작은 값을 보여주었다. 2) 100/30법에 따라 방향성을 고려하여 구한 설계부재력은 2방향 시간이력해석결과로부터 구한 최대설계부재력보다 큰 값을 보여주어 100/30법에 따라 직교성을 고려하는 방법은 타당한 것으로 나타났으나, 시간이력해석결과에서 부재력을 나타내는 벡터$(P,\;M_y,\;and\;M_z)$ 많은 부분이 100/30법에 따라 예측한 설계부재력의 영역을 벗어났다.

균열제어 기능성 복합재료를 이용한 RC 휨 부재 보강수치해석 (Numerical Simulation of Rehabilitated Flexural RC Member using High Performance Composite)

  • 신승교;김태균;임윤묵
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.543-548
    • /
    • 2003
  • In this study, a numerical model is developed using axial deformation link elements that can effectively predict the failure behavior of RC type structures. Using this mod 1, numerical analysis was performed to investigate the strengthening effect and failure behavior of structures repaired with a new material. High-Performance Cementitious Composites, which is characterized by its ductility with 5% strain-capacity is used as a repair material. To investigate the validity of developed numerical model, simulations of direct tension specimen and flexural specimen are performed and the results are compared with published ones. The similar analysis is performed for RC beam. Through this study, it is seen that predicted response has a good agreement with the experimental results. Using this verified numerical model, the strengthening effect of repaired with HPCC structure is analyzed through load-displacement curve and failure modes. Also, the same numerical analysis is performed in RC beam repaired with HPCC. The effect of HPCC ductility is estimated for the overall behavior of structures. Based on the results, the fundamental data are suggested for repaired structures with HPCC.

  • PDF

내부 구속 중공 CFT 부재 콘크리트의 비선형 재료 모델 개발 (Development of Material Nonlinear Models for Concrete in Internally Confined Hollow Members Considering Confining Effect)

  • 한택희;한상윤;임남형;강진욱;이명섭;강영종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.133-140
    • /
    • 2006
  • When concrete is confined triaxially, its strength and toughness are enhanced. Hoop reinforcements or transverse reinforcements laterally confine concrete in the case of a RC member and an outer tube confines concrete in a CFT(Concrete Filled Tube) member. But biaxially confined concrete. such as concrete in a hollow R.C member, does not have much enhanced strength and toughness. In this study, a new-type member. which is a hollow CFT member named as an ICH(Internally Confined Hollow) CFT member, was developed to overcome the low ductility of the hollow member and the high cost of the CFT member. A material nonlinear model for the concrete in an CFT member or an ICH CFT member was developed and coded as a computer program based on Mander's concrete model. Analysis results were verified with experimental results and the developed analysis model showed reasonable and accurate results.

  • PDF

고장력 철근을 사용한 RC 보의 휨연성 평가 (Assessment of Flexural Ductility in RC Beams with High-Strength Reinforcement)

  • 권순범;윤영수;이만섭;임철현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.897-902
    • /
    • 2001
  • Recently, structure performance is maximized by using high strength concrete. In design of structure, concrete need combination with reinforcement, but use of common strength reinforcement make member complex bar placement, so high strength concrete members require increased strength reinforcement. If common strength reinforcement replaced by equal tension area of high strength reinforcement, reinforcement ratio increase and brittle failure of member may occur by material change. So, adequate upper limit of strength ratio is required to affirm ductile behavior in application of high strength reinforcement. In this study, ductility behavior was analysed by factor of reinforcement ratio, strength of concrete and reinforcement. The result indicate that ductile failure is shown under 0.35 $\rho_{b}$ in any reinforcement strength of same section and high strength concrete of 800kg/$cm^{2}$ used commonly is compatible with reinforcement of 5500kg/$cm^{2}$.

  • PDF

다항식 변형률 분포함수를 이용한 철근콘크리트 인장부재의 균열해석 (Cracking Analysis of RC Tension Members Using Polynomial Strain Distribution Function)

  • 곽효경;송종영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.267-274
    • /
    • 2001
  • In this paper, a analytical model which can simulate the post-cracking behavior and tension stiffening effect in a reinforced concrete(RC) tension member is proposed. Unlike the classical approaches using the bond stress-slip relationship or the assumed bond stress distribution, the tension stiffening effect at post-cracking stage is quantified on the basis of polynomial strain distribution functions of steel and concrete, and its contribution is implemented into the reinforcing steel. The introduced model can be effectively used in constructing the stress-strain curve of concrete at post-cracking stage, and the loads carried by concrete and by reinforcing steel along the member axis can be directly evaluated on the basis of the introduced model. In advance, the prediction of cracking loads and elongations of reinforced steel using the introduced model shows good agreements with results from previous analytical studies and experimental data.

  • PDF

Strength design criterion for asymmetrically reinforced RC circular cross-sections in bending

  • Hernandez-Montes, E.;Alameda-Hernandez, P.;Gil-Martin, L.M.
    • Computers and Concrete
    • /
    • 제11권6호
    • /
    • pp.571-585
    • /
    • 2013
  • Asymmetrical reinforcement for circular sections in wall piles is an efficient construction component with reduced embodied energy. It has been proven that asymmetrical reinforced wall piles may save more than 50% of the reinforcement than the traditional symmetrically reinforced circular sections. The use of this new type of structural member increases the number of variables in the design problem, which makes its use by engineers more complicated. In order to facilitate the use of the asymmetrically reinforced piles, this paper presents a criterion for the design of this type of structural member. The chosen criterion has been analyzed with the help of flexural capacity-cost curves. The new criterion is similar to the design procedure traditionally used for RC beams.

비선형 해석을 위한 에너지 소산 산정법의 활용 (Application of Energy Dissipation Capacity for Nonlinear Analysis)

  • 임혜정;박홍근;엄태성
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.172-179
    • /
    • 2003
  • In the performance based seismic design method such as the capacity spectrum method, it is required to estimate precisely strength, deformability and energy dissipation of the member. However it merely depends on empirical equations which are not exact in the estimation of energy dissipation capacity. It is same to the generously used computer programs for nonlinear analysis such as DRAIN-2DX. On the other hand, simple equations for evaluating energy dissipation were developed in a recent study, In this paper, based on the evaluation method, a new cyclic behavior model for a flexure-dominated RC member is proposed. Although this model is simplified, it can accurately reflect the variation of energy dissipation capacity with design parameters. Using this model, a program for the nonlinear static/dynamic analysis of RC moment frame structures is also developed.

  • PDF

연속섬유 시트로 보강된 RC 부재의 모서리 형상에 따른 보강 효율에 관한 연구 (Strengthening Efficiency for the Various Corner Shapes of RC Member confined with Continuous Fiber Sheets)

  • 고훈범;이진섭
    • 한국건축시공학회지
    • /
    • 제8권2호
    • /
    • pp.113-119
    • /
    • 2008
  • Recently, fiber reinforced polymers(FRP) composite materials are used extensively in the rehabilitation of concrete structural members. A main application is to wrap beams and columns using the continuous fibers sheets to improve their strength and ductility. The corner chamfering affects significantly the performance of the continuous fibers sheets, and could lead to environmental problem with waste and dust. The main purpose of this paper is to verify the effect of corner conditions on the strength of the continuous fiber sheets, and to introduce new attached components which can avoid environmental problem. A total of 15 specimens were tested and carefully checked for three types of continuous fiber sheets(carbon, glass, and aramid) and three types of corner conditions(non-chamfering, chamfering, and device attaching). It is proved that the devices proposed in this research have some capabilities to use for RC member. But additional research will be needed for commercializing.

Modelling inelastic hinges using CDM for nonlinear analysis of reinforced concrete frame structures

  • Rajasankar, J.;Iyer, Nagesh R.;Prasad, A. Meher
    • Computers and Concrete
    • /
    • 제6권4호
    • /
    • pp.319-341
    • /
    • 2009
  • A new formulation based on lumped plasticity and inelastic hinges is presented in this paper for nonlinear analysis of Reinforced Concrete (RC) frame structures. Inelastic hinge behaviour is described using the principles of Continuum Damage Mechanics (CDM). Member formulation contains provisions to model stiffness degradation due to cracking of concrete and yielding of reinforcing steel. Depending on its nature, cracking is classified as concentrated or distributed. Concentrated cracking is accounted through a damage variable and its growth is defined based on strain energy principles. Presence of distributed flexural cracks in a member is taken care of by modelling it as non-prismatic. Plasticity theory supported by effective stress concept of CDM is applied to describe the post-yield response. Nonlinear quasi-static analysis is carried out on a RC column and a wide two-storey RC frame to verify the formulation. The column is subjected to constant axial load and monotonic lateral load while the frame is subjected to only lateral load. Computed results are compared with those due to experiments or other numerical methods to validate the performance of the formulation and also to highlight the contribution of distributed cracking on global response.

기존 공동주택에서 채취한 철근콘크리트 기둥의 내력특성 평가 연구 (Axial Strength of RC Columns Extracted from Existing Apartment Housings)

  • 유영찬;신현섭;최기선;임병호;김긍환
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권6호
    • /
    • pp.100-108
    • /
    • 2010
  • 본 논문에서는 노후화된 부재의 내력평가 및 보강설계를 위한 기본 자료를 구축하기 위하여 기존 공동주택에서 채취한 철근 콘크리트 기둥에 대한 구조실험을 통하여 노후화된 부재의 내력특성을 분석하고자 하였다. 이를 위하여 기존 재건축 아파트 현장에서 총 10개의 기둥을 채취하고, 각각의 기하학적 특성에 따라 중심축력 및 편심축력 실험을 실시하였다. 채취된 부재의 치수는 도면과 최대 40mm 정도 차이가 있었으며, 철근 피복두께는 약 25~115 mm 정도의 범위로서 매우 고르지 못한 분포를 나타냈다. 본 실험결과에 의하면 모든 부재의 실험 압축내력이 계산치보다 최소한 75% 이상 큰 것으로 나타나 현행 설계기준을 만족하는 것으로 파악되었다. 그러나, 부재의 변위 연성비는 최소 2.12, 최대 5.86으로 나타나 전반적으로 부족한 것으로 파악되었다.