• Title/Summary/Keyword: RC Beams

Search Result 920, Processing Time 0.028 seconds

Evaluation of the Lap Splice Strengths of High Strength Headed Bars by Flexural Tests of RC Beams (RC 보의 휨실험을 통한 고강도 확대머리철근의 겹침이음 강도 평가)

  • Lee, Ji-Hyeong;Jang, Duck-Young;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.247-255
    • /
    • 2022
  • In this paper, a bending test was conducted on beams with two lap splice details when the effective depth of tensile high strength headed bars overlapped is the same and different. Through bending test, the lap splice performance of the high-strength headed bars was evaluated, and the applicability of the KDS-2021 design formula was evaluated. In the LS specimens with lap splice details where the high strength bars had the same effective depth, all specimens with 1.3 times or more of the development length of the KDS-2021 equation and 1 times or more of the ACI318-19 had the flexural failure mode after the ductile behavior to ensure sufficient lap splice performance. For specimens with details of lap joints between headed bars with different effective depth, when lap splice length is calculated by the KDS-2021 formula, the flexural stress may be transmitted so that the flexural strength at the cross section with the large effective depth and the cross section with the small effective depth becomes similar.

Nonlinear Analysis of RC Members Using Truss Model (트러스 모델을 이용한 철근콘크리트 부재의 비선형해석)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.177-188
    • /
    • 2006
  • Conventional nonlinear finite element analysis requires complicated modeling and analytical technique. Furthermore, it is difficult to interpret the analytical results presented as the stress-strain relationship. In the present study, a design-oriented analytical method using the truss model was developed. A reinforced concrete member to be analyzed was idealized by longitudinal, transverse, and diagonal line elements. Basically, each element was modeled as a composite element of concrete and re-bars. Simplified cyclic models for the concrete and re-bar elements were developed. RC beams and walls with various reinforcement details were analyzed by the proposed method. The inelastic strength, energy dissipation capacity, deformability, and failure mode predicted by the proposed method were compared with those of existing experiments. The results showed that the proposed model accurately predicted the strength and energy dissipation capacities, and to predict deformability of the members, the compression-softening model used for the concrete strut element must be improved.

A New Refined Truss Modeling for Shear-Critical RC Members (Part I) - lts derivation of Basic Concept - (전단이 지배하는 RC부재의 새로운 트러스 모델링 기법 연구 (전편) - 기본 개념 유도를 중심으로 -)

  • Kim Woo;Jeong Jae-Pyong;Kim Dae-Joong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.785-794
    • /
    • 2004
  • This paper describes a new refined truss modeling technique derived based on the well-known relationship of V=dM/dx=zdT/dx+Tdz/dx in a reinforced concrete beam subjected to combined shear and moment loads. The core of the model is that a new perspective on the shear behavior can be gained by considering the variation of the internal arm length along the span, so that the shear resistance mechanism can be expressed by the sum of two base components; arch action and beam action. The sharing ratio of these two actions is determined by accounting for the compatibility of deformation associated to the two actions. Modified Compression Field Theory and the tension-stiffening effect formula in CEB/FIP MC-90 are employed in calculating the deformations. Then the base equation of V=dM/dx has been numerically duplicated to form a new refined truss model.

Capacity Evaluation of Composite Beams Composed of End-Reinforced Concrete and Center-Steel (단부 RC조 중앙부 S조로 이루어진 합성보의 내력 평가)

  • Lee, Seung Jo;Park, Jung Min;Kim, Ki Wook;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.151-159
    • /
    • 2005
  • This study investigated the capacity evaluation of composite beam of the end-reinforced concrete, the center steel with attached main-bar of stud-bolt welting and flange with main parameter, such as shear span depth ratio (a/d=1.5, 2.5, 3.5), reinforcing method, reinforcing length, and steel main-bar ratio. The test results are summarized as follows: As the RC section becomes longer, the capacity ratio of Vsrc, test/Vsrc, the gradually decreased, with the tendency of decrease being remarkably more than a/d=3.5. The reinforcing method showed superior result both vertically and horizontally. And, capacity increase ratio displayed tendency that main-bar fixing length is obvious in 0.15L, and underestimate experimental value usually in Vsrc, Eq(3)~(5) equation. The capacity estimation was proposed equation by regression analysis with change of shear span depth ratio and main-bar fixing, steel main-bar ratio.

Case Study of Explosive Demolition for a Structure in Urban Area (Explosive Demolition of Former Sung-Nam City Hall to Construct Sung-Nam City Hospital) (도심지 구조물 발파해체 적용사례 (성남시 의료원 건립을 위한 구성남시청사 발파해체))

  • Jung, Min-Su;Song, Young-Suk;Heo, Eui-Haeng;Kim, Hyo-Jin
    • Explosives and Blasting
    • /
    • v.30 no.1
    • /
    • pp.17-28
    • /
    • 2012
  • Building demolitions at urban area make some inconvenience to neighborhood through generating noises, ground vibrations, and dusts. For this reason, various methods to control such environmental impacts have been being designed and practiced. Among the methods, the use of explosive demolition is rapidly increasing because it can minimize the inconveniency as well as decrease the working time and cost. In this respect, the old Sung-Nam city hall, which was a Rahmen structure comprised of beams, slabs and columns, was decided to be demolished by explosive demolition. This paper shows that explosive demolition can be the most suitable way of removing old buildings eco-friendly, safely, and economically by showing the observation results obtained from the actual demolition operation for the Sung-Nam city hall.

Detection of flexural damage stages for RC beams using Piezoelectric sensors (PZT)

  • Karayannis, Chris G.;Voutetaki, Maristella E.;Chalioris, Constantin E.;Providakis, Costas P.;Angeli, Georgia M.
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.997-1018
    • /
    • 2015
  • Structural health monitoring along with damage detection and assessment of its severity level in non-accessible reinforced concrete members using piezoelectric materials becomes essential since engineers often face the problem of detecting hidden damage. In this study, the potential of the detection of flexural damage state in the lower part of the mid-span area of a simply supported reinforced concrete beam using piezoelectric sensors is analytically investigated. Two common severity levels of flexural damage are examined: (i) cracking of concrete that extends from the external lower fiber of concrete up to the steel reinforcement and (ii) yielding of reinforcing bars that occurs for higher levels of bending moment and after the flexural cracking. The purpose of this investigation is to apply finite element modeling using admittance based signature data to analyze its accuracy and to check the potential use of this technique to monitor structural damage in real-time. It has been indicated that damage detection capability greatly depends on the frequency selection rather than on the level of the harmonic excitation loading. This way, the excitation loading sequence can have a level low enough that the technique may be considered as applicable and effective for real structures. Further, it is concluded that the closest applied piezoelectric sensor to the flexural damage demonstrates higher overall sensitivity to structural damage in the entire frequency band for both damage states with respect to the other used sensors. However, the observed sensitivity of the other sensors becomes comparatively high in the peak values of the root mean square deviation index.

Inelastic behavior of systems with flexible base

  • Fernandez-Sola, Luciano R.;Huerta-E catl, Juan E.
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.411-424
    • /
    • 2018
  • This study explores the inelastic behavior of systems with flexible base. The use of a single degree of freedom system (ESDOF) with equivalent ductility to represent the response of flexible base systems is discussed. Two different equations to compute equivalent ductility are proposed, one which includes the contribution of rigid body components, and other based on the overstrength of the structure. In order to asses the accuracy of ESDOF approach with the proposed equations, the behavior of a 10-story regular building with reinforced concrete (RC) moment resisting frames is studied. Local and global ductility capacity and demands are used to study the modifications introduced by base flexibility. Three soil types are considered with shear wave velocities of 70, 100 and 250 m/s. Soil-foundation stiffness is included with a set of springs on the base (impedance functions). Capacity curves of the building are computed with pushover analysis. In addition, non linear time history analysis are used to asses the ductility demands. Results show that ductility capacity of the soil-structure system including rigid body components is reduced. Base flexibility does not modify neither yield and maximum base shear. Equivalent ductility estimated with the proposed equations is fits better the results of the numerical model than the one considering elastoplastic behavior. Modification of beams ductility demand due to base flexibility are not constant within the structure. Some elements experience reduced ductility demands while other elements experience increments when flexible base is considered. Soil structure interaction produces changes in the relation between yield strength reduction factor and structure ductility demand. These changes are dependent on the spectral shape and the period of the system with fixed and flexible base.

A Study on the Effective Stress of RC Beams in Applying the Adhesion Reinforced and the External Post-Tensioning Method (RC보의 부착보강공법과 외부강선보강공법의 유효응력에 관한 연구)

  • Park, Yong-Gul;Choi, Jung-Youl;Choi, Jun-Hyeok
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.186-194
    • /
    • 2007
  • This study was performed to compare the load-carrying capacities of the reinforced concrete structure between the carbon fiber adhesion reinforcement method and the external post-tensioning method and further estimate the effective stress of the reinforced material by analyzing the experimental reinforcing effect of each method and the behavior resulting from each method. As a result, it was found out that the effective stress of the carbon fiber reinforcement according to the carbon fiber adhesion reinforcement method had an unexpected value, and also, bearing of the stress was found to be far from sharing thereof. That is to say, while the carbon fiber was bearing the whole stress to some limits, it got to be momentarily ruptured as soon as it went beyond such limits. On the other hand, the external post-tensioning method has the advantage of inducing an initial effective stress by introducing a strain, and thus, it was found that behavior or bearing of the stress was also found to be a solid behavior of the steel wire. This method was also found to be more efficient and excellent than the carbon fiber adhesion reinforcement method in the reinforcing effect or securing the effective stress. Accordingly, we were to discuss the effective stress as comparatively examined, focusing on deriving of the more enhanced reinforcing effect on the basis of the experiment to which the field characteristic is added.

Estimation of creep coefficient in reinforced concrete beam (RC 빔 부재에서 크리프 계수 추정)

  • Park, Jong-Bum;Cho, Jae-Yeol;Park, Bong-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.245-248
    • /
    • 2008
  • Concrete structures show time-dependent behavior due to creep and shrinkage of concrete and the uncertainties of creep and shrinkage are very huge. To reduce uncertainties of creep and shrinkage, it is substantially necessary to perform the long-term creep and shrinkage tests, but actual construction process doesn't allow it due to the limited time. Even though the tests are performed in laboratory, the values obtained from the tests could be different from the actual values in construction site because of the different environment between the laboratory and construction site and the model uncertainty itself. It is difficult to predict the long-term behaviors of concrete structures properly if the assumed creep coefficient obtained from Codes or the results of experiments is different from the real characteristics of concrete creep. In this study, for predicting the long-term behavior, the creep coefficients in reinforced concrete beams are estimated using creep sensitivity analysis from the measured deflections with time. And estimated creep coefficients using creep models of ACI Committee 209 and CEB-FIP MC90 are compared.

  • PDF

Prediction of the Shear Strength of FRP Strengthened RC Beams (II) - Verification and parametric study - (FRP로 보강된 철근 콘크리트보의 전단강도 예측 (II) - 모델 검증 및 변수연구 -)

  • Sim Jong-Sung;Park Cheol-Woo;Moon Do-Young;Sim Jae-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.353-359
    • /
    • 2005
  • To evaluate the proposed shear strength models developed in a companion paper, the shear strengths of test specimens strengthened with FRP were predicted by ACl specification, and elsewhere. The advantage and disadvantage of the models were investigated by the comparisons with the test results. The characteristics and limitations of the existing model were investigated with respect to FRP types, strengthening methods, shear span to depth ratio and effective strength of FRP. The results of this parametric study showed that the proposed shear strength model is more accurate than other models.