• Title/Summary/Keyword: RC Analysis

Search Result 1,841, Processing Time 0.021 seconds

Nonlinear Analysis Models to Predict the Hysteretic Behavior of Existing RC Column Members (기존 RC 기둥 부재의 이력거동 예측을 위한 비선형 해석모델)

  • Choi, Myeong-Ho;Lee, Chang-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.89-98
    • /
    • 2022
  • The recent earthquake in Korea caused a lot of damage to reinforced concrete (RC) columns with non-seismic details. The nonlinear analysis enables predicting the hysteresis behavior of RC columns under earthquakes, but the analytical model used for the columns must be accurate and practical. This paper studied the nonlinear analysis models built into a commercial structural analysis program for the existing RC columns. The load-displacement relationships, maximum strength, initial stiffness, and energy dissipation predicted by the three analysis models were compared and analyzed. The results were similar to those tested in the order of the fiber, Pivot, and Takeda models, whereas the fiber model took the most time to build. For columns subjected to axial load, the Pivot model could predict the behavior at a similar level to that of the fiber model. Based on the above, it is expected that the Pivot model can be applied most practically for existing RC columns.

Analysis-oriented model for seismic assessment of RC jacket retrofitted columns

  • Shayanfar, Javad;Omidalizadeh, Meysam;Nematzadeh, Mahdi
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.371-390
    • /
    • 2020
  • One of the most common strategies for retrofitting as-built reinforced concrete (RC) columns is to enlarge the existing section through the application of a new concrete layer reinforced by both steel transverse and longitudinal reinforcements. The present study was dedicated to developing a comprehensive model to predict the seismic behavior of as-built RC jacketed columns. For this purpose, a new sectional model was developed to perform moment-curvature analysis coupled by the plastic hinge method. In this analysis-oriented model, new methodologies were suggested to address the impacts of axial, flexural and shear mechanisms, variable confining pressure, eccentric loading, longitudinal bar buckling, and varying axial load. To consider the effective interaction between core and jacket, the monolithic factor approach was adopted to extent the response of the monolithic columns to that of a respective RC jacket strengthened column. Next, parametric studies were implemented to examine the effectiveness of the main parameters of the RC jacket strategy in retrofitting as-built RC columns. Ultimately, the reliability of the developed analytical model was validated against a series of experimental results of as-built and retrofitted RC columns.

Analysis of Behaviors of SPS Underground Composite Frames Considering the Rigidity of RC Wale-Steel Beam Joint (RC 띠장-철골 보 접합부의 고정도에 따른 SPS 지하복합골조 거동 해석)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.243-250
    • /
    • 2004
  • In SPS system, steel beams are used as not only temporary struts supporting the wale but main flexural members of building. Previous experimental works show that RC wale-steel beam joints have some flexural rigidity. In this paper, nonlinear analysis is performed using DRAIN-2DX program to investigate the behaviors of the underground composite frames constructed with SPS system when the rigidity of RC wale-steel beam joints change. Analysis variables are the procedure of construction, magnitude of lateral forces, and flexural rigidity of the RC wale-steel beam joint with stud connector. Analysis results show the effects of joint rigidity for the yielding process of frame and the moment and deflection at the mid-span of beam.

Numerical data-driven machine learning model to predict the strength reduction of fire damaged RC columns

  • HyunKyoung Kim;Hyo-Gyoung Kwak;Ju-Young Hwang
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.625-637
    • /
    • 2023
  • The application of ML approaches in determining the resisting capacity of fire damaged RC columns is introduced in this paper, on the basis of analysis data driven ML modeling. Considering the characteristics of the structural behavior of fire damaged RC columns, the representative five approaches of Kernel SVM, ANN, RF, XGB and LGBM are adopted and applied. Additional partial monotonic constraints are adopted in modelling, to ensure the monotone decrease of resisting capacity in RC column with fire exposure time. Furthermore, additional suggestions are also added to mitigate the heterogeneous composition of the training data. Since the use of ML approaches will significantly reduce the computation time in determining the resisting capacity of fire damaged RC columns, which requires many complex solution procedures from the heat transfer analysis to the rigorous nonlinear analyses and their repetition with time, the introduced ML approach can more effectively be used in large complex structures with many RC members. Because of the very small amount of experimental data, the training data are analytically determined from a heat transfer analysis and a subsequent nonlinear finite element (FE) analysis, and their accuracy was previously verified through a correlation study between the numerical results and experimental data. The results obtained from the application of ML approaches show that the resisting capacity of fire damaged RC columns can effectively be predicted by ML approaches.

3D Parametric Modeling of RC Piers and Development of Data Generation Module for a Structural Analysis with 3D Model of RC Piers (RC 교각의 3차원 매개변수 모델링 및 비선형 구조해석 입력 데이터 생성 모듈 구축)

  • Son, You-Jin;Shin, Won-Chul;Lee, Sang-Chul;Lee, Heon-Min;Shin, Hyun-Mock
    • Journal of KIBIM
    • /
    • v.3 no.3
    • /
    • pp.19-28
    • /
    • 2013
  • In Korea highway bridges, most piers are the type of one-column or multi-column ones. So, in this study, under an environment applying BIM so fast, to activate researches on two-column piers subjected to bidirectional seismic loading, a 3D parametric modeling method was selected when the model of two-column piers and one-column piers were formed. Also, interface module between input data in structural analysis and 3D model of RC pier was developed. The module can create the input data for non-linear structural analysis like material, geometric properties and additional coefficients.

Structural Analysis Methods for RC Building Demolition Work under Heavy Equipment Loading (해체공사 실무자를 위한 기계식 해체대상 RC구조물의 해석기법 제안)

  • Park, Seong-Sik;Lee, Bum-Sik;Park, Ji-Young;Kim, Hyo-Jin;Sohn, Chang-Hak
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.569-575
    • /
    • 2011
  • In domestic mechanical demolition work against RC building, unsuitable selection and loading of heavy equipment have led to occasional accidents such as collapse of structural members during the work. Therefore, proper analysis technique to easily decide allowable equipment load on the structure is needed at the planning stage of mechanical demolition work. In this paper, performing loading test and elastic analysis against 4-story building at full scale, we confirm appropriateness for allowable load of equipment on RC structures, which was suggested in previous study, and suggest structural analysis method that can evaluate safety of RC building during the mechanical demolition. The suggested method can be effectively utilized to improve work efficiency through safety of mechanical demolition work against RC building and proper management of equipments.

Development of a user-friendly and transparent non-linear analysis program for RC walls

  • Menegon, Scott J.;Wilson, John L.;Lam, Nelson T.K.;Gad, Emad F.
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.327-341
    • /
    • 2020
  • Advanced forms of structural design (e.g., displacement-based methods) require knowledge of the non-linear force-displacement behavior of both the overall building and individual lateral load resisting elements, i.e., walls or building cores. Similarly, understanding the non-linear behaviour of the elements in a structure can also allow for a less conservative structural response to be calculated by better understanding the cracked (i.e., effective) properties of the various RC elements. Calculating the non-linear response of an RC section typically involves using 'black box' analysis packages, wherein the user may not be in complete control nor be aware of all the intricate settings and/or decisions behind the scenes. This paper introduces a user-friendly and transparent analysis program for predicting the back-bone force displacement behavior of slender (i.e., flexure controlled) RC walls, building cores or columns. The program has been validated and benchmarked theoretically against both commonly available and widely used analysis packages and experimentally against a database of 16 large-scale RC wall test specimens. The program, which is called WHAM, is written using Microsoft Excel spreadsheets to promote transparency and allow users to further develop or modify to suit individual requirements. The program is available free-of-charge and is intended to be used as an educational tool for structural designers, researchers or students.

Research on flexural bearing capacity of cold-formed thin-walled steel and reinforced concrete sandwich composite slabs

  • Qiao, Wentao;Huang, Zhiyuan;Yan, Xiaoshuo;Wang, Dong;Meng, Lijun
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.219-230
    • /
    • 2022
  • The aim of this paper is to study the mechanical behaviors of the cold-formed thin-walled steel and reinforced concrete sandwich composite slab (CTS&RC-SCS) under vertical loads and to develop the calculation methods of its flexural bearing capacity and section stiffness. Two CTS&RC-SCS specimens were designed and manufactured to carry out the static loading test, and meanwhile, the numerical simulation analyses based on finite element method were implemented. The comparison between experimental results and numerical analysis results shows that the CTS&RC-SCS has good flexural capacity and ductility, and the accuracy and rationality of the numerical simulation analysis are verified. Further, the variable parameter analysis results indicate that neither increasing the concrete strength grade nor increasing the thickness of C-sections can significantly improve the flexural capacity of CTS&RC-SCS. With the increase of the ratio of longitudinal bars and the thickness of the composite slab, the flexural capacity of CTS&RC-SCS will be significantly increased. On the basis of experimental research and numerical analysis above, the calculation formula of the flexural capacity of CTS&RC-SCS was deduced according to the plastic section design theory, and section stiffness calculation formula was proposed according to the theory of transformed section. In terms of the ultimate flexural capacity and mid-span deflection, the calculated values based on the formulas and the experimental values are in good agreement.

Modelling beam-to-column joints in seismic analysis of RC frames

  • Lima, Carmine;Martinelli, Enzo;Macorini, Lorenzo;Izzuddin, Bassam A.
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.119-133
    • /
    • 2017
  • Several theoretical and analytical formulations for the prediction of shear strength in reinforced concrete (RC) beam-to-column joints have been recently developed. Some of these predictive models are included in the most recent seismic codes and currently used in practical design. On the other hand, the influence of the stiffness and strength degradations in RC joints on the seismic performance of RC framed buildings has been only marginally studied, and it is generally neglected in practice-oriented seismic analysis. To investigate such influence, this paper proposes a numerical description for representing the cyclic response of RC exterior joints. This is then used in nonlinear numerical simulations of RC frames subjected to earthquake loading. According to the proposed strategy, RC joints are modelled using nonlinear rotational spring elements with strength and stiffness degradations and limited ductility under cyclic loading. The proposed joint model has been firstly calibrated against the results from experimental tests on 12 RC exterior joints. Subsequently, nonlinear static and dynamic analyses have been carried out on two-, three- and four-storey RC frames, which represent realistic existing structures designed according to old standards. The numerical results confirm that the global seismic response of the analysed RC frames is strongly affected by the hysteretic damage in the beam-to-column joints, which determines the failure mode of the frames. This highlights that neglecting the effects of joints damage may potentially lead to non-conservative seismic assessment of existing RC framed structures.

An Analytical Model on the Interface Debonding Failure of RC Beams Strengthened by GFRP (GFRP로 보강된 RC보의 계면박리파괴 해석모델)

  • 김규선;심종성
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.69-80
    • /
    • 1999
  • The strengthening of reinforced concrete structures by externally bonded GFRP has become increasingly common in resent years. However the analysis and design method for GFRP plate strengthening of RC beams is not well established yet. The purpose of present paper is, therefore, to define the failure mechanism and failure behavior of strengthened RC beam using GFRP and then to propose a resonable method for the calculation of interface debonding load for those beams. From the experimental results of beams strengthened by GFRP, the influence of length and thickness, width of plate on the interfacial debonding failure behavior of beam is studied and, on the basis of test results, the semi-empirical equation to predict debonding load is developed. The proposed theory based on nonlinear analysis and critical flexural crack width, predicts relatively well the debonding failure load of test beams and may be efficiently used in the analysis and design of strengthened RC beams using GFRP.