• Title/Summary/Keyword: RC Analysis

Search Result 1,852, Processing Time 0.033 seconds

Probabilistic seismic demand assessment of self-centering concrete frames under mainshock-aftershock excitations

  • Song, Long L.;Guo, Tong;Shi, Xin
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.641-652
    • /
    • 2019
  • This paper investigates the effect of aftershocks on the seismic performance of self-centering (SC) prestressed concrete frames using the probabilistic seismic demand analysis methodology. For this purpose, a 4-story SC concrete frame and a conventional reinforced concrete (RC) frame are designed and numerically analyzed through nonlinear dynamic analyses based on a set of as-recorded mainshock-aftershock seismic sequences. The peak and residual story drifts are selected as the demand parameters. The probabilistic seismic demand models of the SC and RC frames are compared, and the SC frame is found to have less dispersion of peak and residual story drifts. The results of drift demand hazard analyses reveal that the SC frame experiences lower peak story drift hazards and significantly reduced residual story drift hazards than the RC frame when subjected to the mainshocks only or the mainshock-aftershock sequences, which demonstrates the advantages of the SC frame over the RC frame. For both the SC and RC frames, the influence of as-recorded aftershocks on the drift demand hazards is small. It is shown that artificial aftershocks can produce notably increased drift demand hazards of the RC frame, while the incremental effect of artificial aftershocks on the drift demand hazards of the SC frame is much smaller. It is also found that aftershock polarity does not influence the drift demand hazards of both the SC and RC frames.

Seismic collapse risk of RC frames with irregular distributed masonry infills

  • Li, Yan-Wen;Yam, Michael C.H.;Cao, Ke
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.421-433
    • /
    • 2020
  • Masonry infills are normally considered as non-structural elements in design practice, therefore, the interaction between the bounding frame and the strength contribution of masonry infills is commonly ignored in the seismic analysis work of the RC frames. However, a number of typical RC frames with irregular distributed masonry infills have suffered from undesirable weak-story failure in major earthquakes, which indicates that ignoring the influence of masonry infills may cause great seismic collapse risk of RC frames. This paper presented the investigation on the risk of seismic collapse of RC frames with irregularly distributed masonry infills through a large number of nonlinear time history analyses (NTHAs). Based on the results of NTHAs, seismic fragility curves were developed for RC frames with various distribution patterns of masonry infills. It was found that the existence of masonry infills generally reduces the collapse risk of the RC frames under both frequent happened and very strong earthquakes, however, the severe irregular distribution of masonry infills, such as open ground story scenario, results in great risk of forming a weak story failure. The strong-column weak-beam (SCWB) ratio has been widely adopted in major seismic design codes to control the potential of weak story failures, where a SCWB ratio value about 1.2 is generally accepted as the lower limit. In this study, the effect of SCWB ratio on inter-story drift distribution was also parametrically investigated. It showed that improving the SCWB ratio of the RC frames with irregularly distributed masonry infills can reduce inter-story drift concentration index under earthquakes, therefore, prevent weak story failures. To achieve the same drift concentration index limit of the bare RC frame with SCWB ratio of about 1.2, which is specified in ACI318-14, the SCWB ratio of masonry-infilled RC frames should be no less than 1.5. For the open ground story scenario, this value can be as high as 1.8.

Evaluation of Lateral Strength and Ductility of Velcro Reinforced RC Columns with Finite Element Analysis (유한요소해석을 통한 벨크로로 보강된 RC 기둥의 횡방향 강도 및 연성 능력 평가)

  • Kim, Sang-Woo;Kim, Kyeong-Min;Kim, Geon-Woo;Lee, Su-Young;Kim, Jin-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.12-19
    • /
    • 2021
  • Recently, with frequent earthquakes around the world, research on seismic design and seismic reinforcement of reinforced concrete facilities has been actively conducted from earthquakes. In particular, columns, which are compressed members of reinforced concrete structures, are vulnerable to lateral forces caused by earthquakes, so an appropriate seismic reinforcement method is required. Therefore, this study intended to develop Velcro seismic reinforcement method that is quick and easy to construct. For the development of Velcro seismic reinforcement, the adhesion and tensile strength of the existing industrial velcro was improved. A direct tensile test was also conducted to compare the tensile performance of the newly-developed velcro seismic reinforcement to industrial one. In addition, numerical analysis was performed to predict the seismic performance of RC columns reinforced by industrial and newly-developed velcro. Based on the analysis results, the strength and ductility of the non-seismic and velcro-reinforced RC column were reviewed. The analysis confirmed that both the strength and ductility of non-seismic RC columns reinforced by industrial and newly-developed velcro increased, but the seismic performance of the newly-developed Velcro reinforcement is better than that of industrial velcro.

Evaluation through Photochemical Response Analysis on Growth Enhancing Effect of Decomposed Hatchery Waste Egg for Red Pepper (광화학적 반응 분석을 통한 부화장 폐달걀 분해 액비의 고추 생장촉진효과 평가)

  • Yoo, Sung Yung;Kang, Hong Gyu;Yoo, Jae Hong;Lee, Jeon Gyu;Shim, Myoung Yong
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.3
    • /
    • pp.161-168
    • /
    • 2016
  • In this study, growth enhancing effect of hatchery waste egg decomposed liquid fertilizer in pepper plant cultivation through chlorophyll fluorescence (O-J-I-P) analysis. In a whole growth period, egg decomposed fertilizer treated pepper grew well than non treated plant, though it was not statistically significantly different. Amount of chlorophyll fluorescence of non treated plant was higher thant that of fertilizer treated plant. It is determined that eventually lead to increased photosynthesis. In this study, six parameters, Fo, ABS/RC, RC/ABS, TRo/RC, DI0/RC, and DF Total ABS were the important factors represent efficiency of photochemical responses of pepper plant treated with hatchery waste egg decomposed fertilizer.

Two-way Shear Strength Evaluation of Transfer Slab-Column Connections Through Nonlinear FE Analysis (비선형유한요소해석을 통한 전이슬래브-기둥 접합부의 2면 전단강도 평가)

  • Jeong, Seong-Hun;Kang, Su-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.315-329
    • /
    • 2018
  • Recently, RC transfer slab systems have been used widely to construct high-rise wall-type apartments for securing parking space or public space. However, it is problem that the design method and structural performance evaluation method developed for thin RC flat slab are still used in the design of the transfer slab whose thickness is very thick and therefore structural behavior is expected to be different from RC flat slab. Thus, for the rational design of the transfer slab, the ultimate shear behavior of the RC transfer slab system is required to be analyzed properly. Accordingly, in the present study, the two-way shear behavior of the transfer slab was analyzed using nonlinear FEM according to various design parameters such as thickness of the transfer slab, strength of concrete, shear span ratio, and reinforcement ratio. In addition, the two-way shear strength evaluations of RC transfer slab by the existing evaluation methods were verified by comparing those with the results of nonlinear FEM analysis.

Performance based assessment for tall core structures consisting of buckling restrained braced frames and RC walls

  • Beiraghi, Hamid;Alinaghi, Ali
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.515-530
    • /
    • 2021
  • In a tall reinforced concrete (RC) core wall system subjected to strong ground motions, inelastic behavior near the base as well as mid-height of the wall is possible. Generally, the formation of plastic hinge in a core wall system may lead to extensive damage and significant repairing cost. A new configuration of core structures consisting of buckling restrained braced frames (BRBFs) and RC walls is an interesting idea in tall building seismic design. This concept can be used in the plan configuration of tall core wall systems. In this study, tall buildings with different configurations of combined core systems were designed and analyzed. Nonlinear time history analysis at severe earthquake level was performed and the results were compared for different configurations. The results demonstrate that using enough BRBFs can reduce the large curvature ductility demand at the base and mid-height of RC core wall systems and also can reduce the maximum inter-story drift ratio. For a better investigation of the structural behavior, the probabilistic approach can lead to in-depth insight. Therefore, incremental dynamic analysis (IDA) curves were calculated to assess the performance. Fragility curves at different limit states were then extracted and compared. Mean IDA curves demonstrate better behavior for a combined system, compared with conventional RC core wall systems. Collapse margin ratio for a RC core wall only system and RC core with enough BRBFs were almost 1.05 and 1.92 respectively. Therefore, it appears that using one RC core wall combined with enough BRBF core is an effective idea to achieve more confidence against tall building collapse and the results demonstrated the potential of the proposed system.

Behavior of reinforced concrete plates under impact loading: different support conditions and sizes

  • Husem, Metin;Cosgun, Suleyman I.
    • Computers and Concrete
    • /
    • v.18 no.3
    • /
    • pp.389-404
    • /
    • 2016
  • In this study, effects of impact loads on reinforced concrete (RC) plates are examined analytically. During examination of RC plates, they were exposed to impact loading with two different support conditions in three different sizes. RC plates in different support conditions were analyzed with Concrete Damage Plasticity Model (CDP) and reinforcing steel was modeled with Classical Metal Plasticity Model (CMP) by ABAQUS finite element software. After the analysis it is found that impact loads, displacements, energy absorption capacities and damage patterns are changed due to support conditions and plate sizes. Results that are obtained from RC plate experiments in literature under impact loads are found to be similar with the results of numerical analysis with CDP material models.

Active RC Bandpass Filter with the Independent Tuning and Bandwidth Controls (중심주파수와 대역폭의 제어가 독립적인 능동여파기)

  • 김수중;정신일
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.12 no.6
    • /
    • pp.9-13
    • /
    • 1975
  • Employing indefinite admittance matrix analysis method, a novel synthesis procedure of general active-RC filters using 2 operational amplifiers has been shown in this paper. With this procedure, a stable active-RC bandpass filter hart been designed, which provides for independent adjustment of the uning and band-width control. The predicted and actual performance is in good agreement.

  • PDF

Estimation of Early-Age Cracking of Reinforced Concrete Walls (철근콘크리트 벽체의 초기 균열 거동에 대한 연구)

  • Kwak Hyo-Gyoung;Ha Soo-Jun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.898-905
    • /
    • 2006
  • In the present paper, for a quantitative assessment of early-age cracking in an RC wall, an improved analytical model is proposed. First of all, a three-dimensional finite element model for the analysis of stresses due to hydration heat and differential drying shrinkage is introduced. A discrete steel element derived using the equivalent nodal force concept is used to simulate reinforcing steels, embedded in a concrete matrix. In advance, to quantitatively calculate the cracking potential, an analytical model that can estimate the post-cracking behavior in an RC tension member is proposed Subsequent comparisons. of analytical results with test results verify that the combined use of both the finite element model for the stress analysis as well as the analytical model for the estimation of the post-cracking behavior in an RC tension member make it possible to accurately predict the cracking ,behavior of RC walls.

  • PDF

A load increment method for ductile reinforced concrete (RC) frame structures considering strain hardening effects

  • Gunhan Aksoylu, M.;Girgin, Konuralp
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.231-247
    • /
    • 2011
  • This study introduces a new load increment method for the ductile reinforced concrete (RC) frame structures by including strain-hardening effects. The proposed method is a nonlinear static analysis technique employed for RC frame structures subjected to constant gravity loads and monotonically increasing lateral loads. The material nonlinearity in RC structural elements is considered by adopting plastic hinge concept which is extended by including the strain hardening as well as interaction between bending moment and axial force. Geometric non-linearity, known as second order effect, is implemented to the method as well.