• Title/Summary/Keyword: RBF networks

Search Result 130, Processing Time 0.028 seconds

RBF Network Based QFT Parameter-Scheduling Control Design for Linear Time-Varying Systems and Its Application to a Missile Control System (시변시스템을 위한 RBF 신경망 기반의 QFT 파라미터계획 제어기법과 alt일 제어시스템에의 적용)

  • 임기홍;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.199-199
    • /
    • 2000
  • Most of linear time-varying(LTV) systems except special cases have no general solution for the dynamic equations. Thus, it is difficult to design time-varying controllers in analytic ways, and other control design approaches such as robust control have been applied to control design for uncertain LTI systems which are the approximation of LTV systems have been generally used instead. A robust control method such as quantitative feedback theory(QFT) has an advantage of guaranteeing the stability and the performance specification against plant parameter uncertainties in frozen time sense. However, if these methods are applied to the approximated linear time-invariant(LTI) plants which have large uncertainty, the designed control will be constructed in complicated forms and usually not suitable for fast dynamic performance. In this paper, as a method to enhance the fast dynamic performance, the approximated uncertainty of time-varying parameters are reduced by the proposed QFT parameter-scheduling control design based on radial basis function (RBF) networks for LTV systems with bounded time-varying parameters.

  • PDF

A Modified FCM for Nonlinear Blind Channel Equalization using RBF Networks

  • Han, Soo-Whan
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.35-41
    • /
    • 2007
  • In this paper, a modified Fuzzy C-Means (MFCM) algorithm is presented for nonlinear blind channel equalization. The proposed MFCM searches the optimal channel output states of a nonlinear channel, based on the Bayesian likelihood fitness function instead of a conventional Euclidean distance measure. In its searching procedure, all of the possible desired channel states are constructed with the elements of estimated channel output states. The desired state with the maximum Bayesian fitness is selected and placed at the center of a Radial Basis Function (RBF) equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with that of a hybrid genetic algorithm (GA merged with simulated annealing (SA): GASA), and the relatively high accuracy and fast searching speed are achieved.

Forecasting of Runoff Hydrograph Using Neural Network Algorithms (신경망 알고리즘을 적용한 유출수문곡선의 예측)

  • An, Sang-Jin;Jeon, Gye-Won;Kim, Gwang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.505-515
    • /
    • 2000
  • THe purpose of this study is to forecast of runoff hydrographs according to rainfall event in a stream. The neural network theory as a hydrologic blackbox model is used to solve hydrological problems. The Back-Propagation(BP) algorithm by the Levenberg-Marquardt(LM) techniques and Radial Basis Function(RBF) network in Neural Network(NN) models are used. Runoff hydrograph is forecasted in Bocheongstream basin which is a IHP the representative basin. The possibility of a simulation for runoff hydrographs about unlearned stations is considered. The results show that NN models are performed to effective learning for rainfall-runoff process of hydrologic system which involves a complexity and nonliner relationships. The RBF networks consist of 2 learning steps. The first step is an unsupervised learning in hidden layer and the next step is a supervised learning in output layer. Therefore, the RBF networks could provide rather time saved in the learning step than the BP algorithm. The peak discharge both BP algorithm and RBF network model in the estimation of an unlearned are a is trended to observed values.

  • PDF

Extraction and Recognition of Concrete Slab Surface Cracks using ART2-based RBF Network (ART2 기반 RBF 네트워크를 이용한 콘크리트 슬래브 표면의 균열 추출 및 인식)

  • Kim, Kwang-Baek
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.8
    • /
    • pp.1068-1077
    • /
    • 2007
  • This paper proposes a method that extracts characteristics of cracks such as length, thickness and direction from a concrete slab surface image with image processing techniques. These techniques extract the cracks from the concrete surface image in variable conditions including bad image conditions) using the ART2-based RBF network to recognize the dominant directions -45 degree, 45 degree, horizontal and vertical) of the extracted cracks from the automatically calculated specifications like the lengths, directions and widths of the cracks. Our proposed extraction algorithms and analysis of the concrete cracks used a Robert operation to emphasize the cracks, and a Multiple operation to increase the difference in brightness between the cracks and background. After these treatments, the cracks can be extracted from the image by using an iterated binarization technique. Noise reduction techniques are used three separate times on this binarized image, and the specifications of the cracks are extracted form this noiseless image. The dominant directions can be recognized by using the ART2-based RBF network. In this method, the ART2 is used between the input layer and the middle layer to learn, and the Delta learning method is used between the middle layer and the output layer. The experiments using real concrete images showed that the cracks were effectively extracted, and the Proposed ART2-based RBF network effectively recognized the directions of the extracted cracks.

  • PDF

An Improved Learning Approach for the Resource- Allocating Network (RAN) (RAN을 위한 개선된 학습 방법)

  • 최종수;권오신;김현석
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.11
    • /
    • pp.89-98
    • /
    • 1998
  • The enhanced resource-allocating network(ERAN) that adaptively generates hidden units of radial basis function(RBF) network for systems modeling has been proposed. The ERAN is an improved version of the resource-allocating network(RAN) that allocates new hidden units based on the novelty of observation data. The learning process of the ERAN involves allocation of new hidden units and adjusting the network parameters. The network starts with no hidden units. As observation data are received, the network adds a hidden units only if the three network growth criteria are satisfied. The network parameters are adjusted by the LMS algorithm. The performance of the ERAN is compared with the RAN for nonlinear static systems modeling problem with sequential and random learning. For two simulations, the ERAN has been shown to realize RBF networks with better accuracy with fewer hidden units.

  • PDF

Identifiers Recognition of Container Image Using Morphological Characteristic and FCM-based Fuzzy RBF Networks (형태학적 특성과 FCM 기반 퍼지 RBF 네트워크를 이용한 컨테이너 식별자 인식)

  • Kim, Tae-Hyung;Soung, Won-Goo;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.252-257
    • /
    • 2007
  • 우리나라의 항만은 수 출입화물의 99.5%를 처리하며, 육로 및 철도 수송 물동량의 기종점 역할을 수행하는 중요한 곳으로서 항만 물동량의 신속한 처리와 자동화 시스템에 의한 비용절감은 엄청난 효과를 가져온다. 따라서 본 논문에서는 항만에서 취급하는 컨테이너를 자동으로 식별할 수 있는 자동화 방법을 제안한다. 실제 컨테이너 영상을 그레이 영상으로 변환한 후, 프리윗 마스크(Prewitt-Mask)를 적용하여 윤곽선을 추출하고 컨테이너를 식별할 수 있는 개별 식별자의 형태학적 특징 정보를 이용하여 식별자 후보영역을 검출한다. 검출된 식별자 후보영역은 개별 식별자 영역외에 잡음 영역이 포함되어 있으므로 4방향 윤곽선 추적 알고리즘과 Grassfire 알고리즘을 적용하여 잡음을 제거하고 개별 식별자들을 각각 객체화한다. 잡음이 제거된 식별자 후보 영역에서 객체화 한 개별 식별자는 컨테이너 식별을 위해 FCM 기반 퍼지 RBF 네트워크를 적용하여 인식한다. 본 논문에서 제안한 컨테이너 식별자 인식 방법의 성능을 평가하기 위해 실제 컨테이너 영상 300장을 대상으로 실험한 결과, 기존의 방법보다 인식 성능이 개선되었음을 확인할 수 있었다.

  • PDF

Relation between Multidimensional Liner Interpolation and Regularization Networks

  • Om, Kyong-Sik;Kim, Hee-Chan;Min, Byoun-Goo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.128-133
    • /
    • 1997
  • This paper examines the relation between multidimensional linear interpolation ( MDI ) and regularization networks, and shows that and MDI is a special form of regularization networks. For this purpose we propose a triangular basis function ( TBF ) network. Also we verified the condition when our proposed TBF becomes a well-known radial basis function ( RBF ).

  • PDF

Recognition of Passports using Enhanced Neural Networks and Photo Authentication (개선된 신경망과 사진 인증을 이용한 여권 인식)

  • Kim Kwang-Baek;Park Hyun-Jung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.983-989
    • /
    • 2006
  • Current emigration and immigration control inspects passports by the naked eye, registers them by manual input, and compares them with items of database. In this paper, we propose the method to recognize information codes of passports. The proposed passport recognition method extracts character-rows of information codes by applying sobel operator, horizontal smearing, and contour tracking algorithm. The extracted letter-row regions is binarized. After a CDM mask is applied to them in order to recover the individual codes, the individual codes are extracted by applying vertical smearing. The recognizing of individual codes is performed by the RBF network whose hidden layer is applied by ART 2 algorithm and whose learning between the hidden layer and the output layer is applied by a generalized delta learning method. After a photo region is extracted from the reference of the starting point of the extracted character-rows of information codes, that region is verified by the information of luminance, edge, and hue. The verified photo region is certified by the classified features by the ART 2 algorithm. The comparing experiment with real passport images confirmed the good performance of the proposed method.

Relations among the multidimensional linear interpolation fuzzy reasoning , and neural networks

  • Om, Kyong-Sik;Kim, Hee-Chan;Byoung-Goo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.562-567
    • /
    • 1998
  • This paper examined the relations among the multidimensional linear interpolation(MDI) and fuzzy reasoning , and neural networks, and showed that an showed that an MDI is a special form of Tsukamoto's fuzzy reasoning and regularization networks in the perspective of fuzzy reasoning and neural networks, respectively. For this purposes, we proposed a special Tsukamoto's membership (STM) systemand triangular basis function (TBF) networks, Also we verified the condition when our proposed TBF becomes a well-known radial basis function (RBF).

  • PDF

A Robust Learning Algorithm for System Identification (외란을 포함한 학습 데이터에 강인한 시스템 모델링)

  • 한상현;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.200-200
    • /
    • 2000
  • Highly nonlinear dynamical systems are easily identified using neural networks. When disturbances are included in the learning data set Int system modeling, modeling process will be poorly performed. Since the radial basis functions in the radial basis function network(RBFN) are centered at the points specified by the weights, RBF networks are robust for approximating the process including the narrow-band disturbances deviating significantly from the regular signals. To exclude(filter) these disturbances, a robust algorithm for system identification, based on the RBFN, is proposed. The performance of system identification excluding disturbances is investigated and compared with the one including disturbances.

  • PDF