• Title/Summary/Keyword: RBF Neural Networks

Search Result 94, Processing Time 0.038 seconds

A Performance Improvement for Tracking Controller of a Mobile Robot Using Neural Networks (신경망을 이용한 이동로봇 궤적제어기 성능개선)

  • Park Jae-Hwae;Lee Man-Hyung;Lee JangMyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1249-1255
    • /
    • 2004
  • A new parameter adaptation scheme for RBF Neural Network (NN) has been developed in this paper. Even though the RBF Neural Network (NN) based controllers are robust against both un-modeled dynamics and external disturbances, the performance is not satisfactory for a fast and precise mobile robot. To improve the tracking performance as well as robustness, all the parameters of RBF NN are updated in real time. The stability of this control law is rigorously proved by following the Lyapunov stability theory and shown by the experimental simulations. The fact that all of the weighting factors, width and center of RBF NN have been updated implies that this scheme utilizes all the possibilities in RBF NN to make the controller robust and precise while the mobile robot is following un-known trajectories. The performance of this new algorithm has been compared to the conventional RBF NN controller where some of the parameters are adjusted for robustness.

VAD By Neural Network Under Wireless Communication Systems (Neural Network을 이용한 무선 통신시스템에서의 VAD)

  • Lee Hosun;Kim Sukyung;Park Sung-Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1262-1267
    • /
    • 2005
  • Elliptical basis function (EBF) neural network works stably under high-level background noise environment and makes the nonlinear processing possible. It can be adapted real time VAD with simple design. This paper introduces VAD implementation using EBF and the experimental results show that EBF VAD outperforms G729 Annex B and RBF neural networks. The best error rates achieved by the EBF networks were improved more than $70\%$ in speech and $50\%$ in silence while that achieved by G.729 Annex B and RBF networks respectively.

Self-organized Learning in Complexity Growing of Radial Basis Function Networks

  • Arisariyawong, Somwang;Charoenseang, Siam
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.30-33
    • /
    • 2002
  • To obtain good performance of radial basis function (RBF) neural networks, it needs very careful consideration in design. The selection of several parameters such as the number of centers and widths of the radial basis functions must be considered carefully since they critically affect the network's performance. We propose a learning algorithm for growing of complexity of RBF neural networks which is adapted automatically according to the complexity of tasks. The algorithm generates a new basis function based on the errors of network, the percentage of decreasing rate of errors and the nearest distance from input data to the center of hidden unit. The RBF's center is located at the point where the maximum of absolute interference error occurs in the input space. The width is calculated based on the standard deviation of distance between the center and inputs data. The steepest descent method is also applied for adjusting the weights, centers, and widths. To demonstrate the performance of the proposed algorithm, general problem of function estimation is evaluated. The results obtained from the simulation show that the proposed algorithm for RBF neural networks yields good performance in terms of convergence and accuracy compared with those obtained by conventional multilayer feedforward networks.

  • PDF

The Study of Neural Networks Using Orthogonal function System in Hidden-Layer (직교함수를 은닉층에 지닌 신경회로망에 대한 연구)

  • 권성훈;최용준;이정훈;유석용;엄기환;손동설
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.482-485
    • /
    • 1999
  • In this paper we proposed a heterogeneous hidden layer consisting of both sigmoid functions and RBFs(Radial Basis Function) in multi-layered neural networks. Focusing on the orthogonal relationship between the sigmoid function and its derivative, a derived RBF that is a derivative of the sigmoid function is used as the RBF in the neural network. so the proposed neural network is called ONN(Orthogonal Neural Network). Identification results using a nonlinear function confirm both the ONN's feasibility and characteristics by comparing with those obtained using a conventional neural network which has sigmoid function or RBF in hidden layer

  • PDF

Inverse Estimation of Surface Temperature Using the RBF Network (RBF Network 를 이용한 표면온도 역추정에 관한 연구)

  • Jung, Bup-Sung;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1183-1188
    • /
    • 2004
  • The inverse heat conduction problem (IHCP) is a problem of estimating boundary condition from temperature measurement at one or more interior points. Neural networks are general information processing systems inspired by the connectionist theory of human brain. By properly training the network by the learning rule, the neural network method can handle many non-linear or other complex problems. In this work, neural network is applied to complicated inverse heat conduction problems. Efficiency of the procedure is enhanced by incorporating the radial basis functions (RBF). The RBF is trained faster than other neural network and can find smooth solution. In order to demonstrate the effectiveness of the current scheme, a typical one-dimensional IHCP is considered. At one surface, the temperature as well as the heat flux is known. The unknown temperature of interest is estimated on the other side of the slab. The results from the proposed method based on RBF neural network are compared with the conventional method.

  • PDF

APPLICATION OF NEURAL NETWORK FOR THE CLOUD DETECTION FROM GEOSTATIONARY SATELLITE DATA

  • Ahn, Hyun-Jeong;Ahn, Myung-Hwan;Chung, Chu-Yong
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.34-37
    • /
    • 2005
  • An efficient and robust neural network-based scheme is introduced in this paper to perform automatic cloud detection. Unlike many existing cloud detection schemes which use thresholding and statistical methods, we used the artificial neural network methods, the multi-layer perceptrons (MLP) with back-propagation algorithm and radial basis function (RBF) networks for cloud detection from Geostationary satellite images. We have used a simple scene (a mixed scene containing only cloud and clear sky). The main results show that the neural networks are able to handle complex atmospheric and meteorological phenomena. The experimental results show that two methods performed well, obtaining a classification accuracy reaching over 90 percent. Moreover, the RBF model is the most effective method for the cloud classification.

  • PDF

Modelling of dissolved oxygen (DO) in a reservoir using artificial neural networks: Amir Kabir Reservoir, Iran

  • Asadollahfardi, Gholamreza;Aria, Shiva Homayoun;Abaei, Mehrdad
    • Advances in environmental research
    • /
    • v.5 no.3
    • /
    • pp.153-167
    • /
    • 2016
  • We applied multilayer perceptron (MLP) and radial basis function (RBF) neural network in upstream and downstream water quality stations of the Karaj Reservoir in Iran. For both neural networks, inputs were pH, turbidity, temperature, chlorophyll-a, biochemical oxygen demand (BOD) and nitrate, and the output was dissolved oxygen (DO). We used an MLP neural network with two hidden layers, for upstream station 15 and 33 neurons in the first and second layers respectively, and for the downstream station, 16 and 21 neurons in the first and second hidden layer were used which had minimum amount of errors. For learning process 6-fold cross validation were applied to avoid over fitting. The best results acquired from RBF model, in which the mean bias error (MBE) and root mean squared error (RMSE) were 0.063 and 0.10 for the upstream station. The MBE and RSME were 0.0126 and 0.099 for the downstream station. The coefficient of determination ($R^2$) between the observed data and the predicted data for upstream and downstream stations in the MLP was 0.801 and 0.904, respectively, and in the RBF network were 0.962 and 0.97, respectively. The MLP neural network had acceptable results; however, the results of RBF network were more accurate. A sensitivity analysis for the MLP neural network indicated that temperature was the first parameter, pH the second and nitrate was the last factor affecting the prediction of DO concentrations. The results proved the workability and accuracy of the RBF model in the prediction of the DO.

Self-organized Distributed Networks for Precise Modelling of a System (시스템의 정밀 모델링을 위한 자율분산 신경망)

  • Kim, Hyong-Suk;Choi, Jong-Soo;Kim, Sung-Joong
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.11
    • /
    • pp.151-162
    • /
    • 1994
  • A new neural network structure called Self-organized Distributed Networks (SODN) is proposed for developing the neural network-based multidimensional system models. The learning with the proposed networks is fast and precise. Such properties are caused from the local learning mechanism. The structure of the networks is combination of dual networks such as self-organized networks and multilayered local networks. Each local networks learns only data in a sub-region. Large number of memory requirements and low generalization capability for the untrained region, which are drawbacks of conventional local network learning, are overcomed in the proposed networks. The simulation results of the proposed networks show better performance than the standard multilayer neural networks and the Radial Basis function(RBF) networks.

  • PDF

Pattern Classification of Two Classes' Problem Using Polynomial based Radial Basis Function Neural Networks (다항식기반 RBF 신경회로망을 이용한 2-클래스 문제에 대한 패턴분류)

  • Kim, Gil-Sung;Park, Byoung-Jun;Oh, Sung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.451-452
    • /
    • 2007
  • 본 논문에서는 다항식 기반 Radial Basis Function(RBF)신경회로망(Polynomial based Radial Basis Function Neural Networks)을 설계하고 이를 2-클래스 패턴 분류 문제에 응용하여 그 성능을 분석한다. 제안된 다항식기반 RBF 신경회로망은 입력층, 은닉층, 출력 층으로 이루어진다. 입력층은 입력 벡터의 값들을 은닉 층으로 전달하는 기능을 수행하고 은닉층은 Fuzzy c-means 클러스터링을 통하여 뉴런의 출력 값으로 내보낸다. 은닉층과 출력층사이의 연결가중치는 상수, 선형식 또는 이차식으로 이루어지며 경사 하강법에 의해 학습된다. Networks의 최종 출력은 연결가중치와 은닉층 출력의 곱에 의해 퍼지추론의 결과로서 얻어진다. 제안된 다항식기반 RBF 신경회로망은 각기 다른 4종류의 2-클래스 분류 문제에 적용 및 평가되어 분류기로써의 성능을 분석한다.

  • PDF

Artificial neural network reconstructs core power distribution

  • Li, Wenhuai;Ding, Peng;Xia, Wenqing;Chen, Shu;Yu, Fengwan;Duan, Chengjie;Cui, Dawei;Chen, Chen
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.617-626
    • /
    • 2022
  • To effectively monitor the variety of distributions of neutron flux, fuel power or temperatures in the reactor core, usually the ex-core and in-core neutron detectors are employed. The thermocouples for temperature measurement are installed in the coolant inlet or outlet of the respective fuel assemblies. It is necessary to reconstruct the measurement information of the whole reactor position. However, the reading of different types of detector in the core reflects different aspects of the 3D power distribution. The feasibility of reconstruction the core three-dimension power distribution by using different combinations of in-core, ex-core and thermocouples detectors is analyzed in this paper to synthesize the useful information of various detectors. A comparison of multilayer perceptron (MLP) network and radial basis function (RBF) network is performed. RBF results are more extreme precision but also more sensitivity to detector failure and uncertainty, compare to MLP networks. This is because that localized neural network could offer conservative regression in RBF. Adding random disturbance in training dataset is helpful to reduce the influence of detector failure and uncertainty. Some convolution neural networks seem to be helpful to get more accurate results by use more spatial layout information, though relative researches are still under way.