• Title/Summary/Keyword: RAQMS

Search Result 3, Processing Time 0.017 seconds

Comparison between Atmospheric Chemistry Model and Observations Utilizing the RAQMS-CMAQ Linkage, Part II : Impact on PM2.5 Mass Concentrations Simulated

  • Lee, DaeGyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.108-114
    • /
    • 2014
  • In the companion paper (Lee et al., 2012), it was showed that CMAQ simulation using a lateral boundary conditions (LBCs) derived from RAQMS-CMAQ linkage, compared to the CMAQ results with the default CMAQ LBCs, improved ozone simulations in the conterminous US domain. In the present paper, the study is extended to investigate the influence of LBCs on PM2.5 simulation. MM5-SMOKE-CMAQ modeling system was used for meteorological field generation, emissions preparation and air quality simulations, respectively. Realtime Air Quality Modeling System (RAQMS) model assimilated with satellite observations were used to generate the CMAQ-ready LBCs. CMAQ PM2.5 simulations with RAQMS LBCs and predefined LBCs were compared with U.S. EPA Air Quality System (AQS) measurements. Mean PM2.5 lateral boundary conditions taken from RAQMS outputs showed strong variations both in the horizontal grid and vertical layers in the northern and western boundaries and affected the results of CMAQ PM2.5 predictions. CMAQ with RAQMS LBCs could improve CMAQ PM2.5 predictions resulting in the improvement of index of agreement from 0.38 to 0.63.

A Study on the Characteristics of the Atmospheric Environment in Suwon Based on GIS Data and Measured Meteorological Data and Fine Particle Concentrations (GIS 자료와 지상측정 기상·미세먼지 자료에 기반한 수원시 지역의 도시대기환경 특성 연구)

  • Wang, Jang-Woon;Han, Sang-Cheol;Mun, Da-Som;Yang, Minjune;Choi, Seok-Hwan;Kang, Eunha;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1849-1858
    • /
    • 2021
  • We analyzed the monthly and annual trends of the meteorological factors(wind speeds and directions and air temperatures) measured at an automated synoptic observation system (ASOS) and fine particle (PM10 and PM2.5) concentrations measured at the air quality monitoring systems(AQMSs) in Suwon. In addition, we investigated how the fine particle concentrations were related to the meteorological factors as well as urban morphological parameters (fractions of building volume and road area). We calculated the total volume of buildings and the total area of the roads in the area of 2 km × 2 km centered at each AQMS using the geographic information system and environmental geographic information system. The analysis of the meteorological factors showed that the dominant wind directions at the ASOS were westerly and northwesterly and that the average wind speed was strong in Spring. The measured fine particle concentrations were low in Summer and early Autumn (July to September) and high in Spring and Winter. In 2020, the annual mean fine particle concentration was lowest at most AQMSs. The fine particle concentrations were negatively and weakly correlated with the measured wind speeds and air temperatures (the correlation between PM2.5 concentrations and air temperatures was relatively strong). In Suwon city, at least for 6 AQMSs except for the RAQMS 131116 and AQMS 131118, the PM10 concentrations were affected mainly by the transport from outside rather than primary emission from mobile sources or wind speed decrease caused by buildings and, in the case of PM2.5, vise versa.