• Title/Summary/Keyword: RANS model

Search Result 366, Processing Time 0.028 seconds

DYNAMIC STALL PREDICTION WITH TRANSITION OVER AN OSCILLATING AIRFOIL (천이를 고려한 진동하는 익형의 동적 실속 예측)

  • Jeon, Sang-Eon;Park, Soo-Hyung;Kim, Chang-Joo;Chung, Ki-Hoon;Jung, Kyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.358-361
    • /
    • 2010
  • A Reynolds-Averaged Navier-Stokes (RANS) code with transition prediction model is developed and the computational results on an oscillating airfoil are compared with the experimental data for OA209 airfoil. An approximated eN method that can predict transition onset points and the length of transition region is directly applied to the RANS code. The hysteresis loop in dynamic stall is compared for the computational results using transition prediction and fully turbulent models with the experimental data. Results with transition prediction show more correlation with the experimental data than the fully turbulent computation.

  • PDF

LOW-SPEED AERODYNAMIC CHARACTERISTIC OF TRANSITION FLOW OVER THE NACA0012 (NACA0012 천이 유동의 저속 공력 특성 해석)

  • Jeon, Sang-Eon;Park, Soo-Hyung;Kim, Sang-Ho;Byun, Yung-Hwan;Jung, Kyung-Jin;Kang, In-Mo
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.1-8
    • /
    • 2010
  • Laminar separation bubble and transitional flow over the NACA0012 are investigated at a moderate range of Reynolds numbers. A Reynolds-Averaged Navier-Stokes code is coupled with an empirical transition model that can predict transition onset points and the length of transition region. Without solving the boundary layer equations, approximated e-N method is directly applied to the RANS code and iteratively solved together. The computational results are compared with the experimental data for the NACA0012 airfoil. Results of transition onset point and the length are compared well with experimental data and Xfoil prediction. The present RANS results show at high angles of attack better agreement with experimental data than Xfoil results using the boundary layer equations.

Numerical Simulation of 2-D Wing-In-Ground Effect (2차원 해면효과의 수치계산)

  • Yang Chen-Jun;Shin Myung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.90-98
    • /
    • 1998
  • 본 논문은 2차원 해면효과의 수치계산 결과를 정리하였다. 지면으로부터의 높이변화에 따른 점성유동장을 계산하기 위하여 지배방정식으로는 비압축성 RANS방정식을, 시간에 대하여 서는 음해법으로 프로그램을 구성하였다. 압력항은 가상압축성을 도입 4차 수치확산항을 추가하는 것에 의해 계산하였으며, 높은 레이놀즈수에서의 효과적인 계산을 위해 Baldwin-Lomax 난류 모델을 도입하였다. 해면효과가 없는 무한유중에서의 NACA-0012단면 계산결과를 실험데이터와 비교하는 것에 의해 프로그램의 타당성을 확인하였다. NACA-6409와 두께비 $4.6\%$의 날개에 대하여 해면효과를 고려한 계산을 수행하였다. 높이의 변화에 따라 계산된 무차원계수, 압력 및 속도분포는 해면효과의 특성을 잘 보여주고 있다.

  • PDF

CFD-based simulation of fire-induced smoke and carbon monoxide transportation in the single compartment (CFD를 이용한 단일 구획 공간에서의 연기와 CO 확산 시뮬레이션)

  • Son, Yoon-Suk;Kim, Hyeong-Gweon;Oh, Hyung-Sik;Kim, Tae-Ok;Shin, Dong-Il
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.290-293
    • /
    • 2008
  • In this study, the Computational Fluid Dynamics (CFD) has been used to analyze the smoke movement and the carbon monoxide concentration distribution, both vertically and longitudinally, in a compartment, based on conservation laws. The Fire Dynamics Simulator (FDS) developed by National Institute of Standards and Technology (NIST) was used for numerical simulations using Reynolds averaged Navier-Stokes equations (RANS) model to solve for time-averaged properties. Results show, as a function of time, a detailed distribution of temperature and carbon monoxide concentration changing against the height above the floor and those changes alongside the distance away from the fire source. Fire-induced smoke and toxic gases like CO are more dangerous in a confined space. The result of study may contribute in designing the smoke evacuation system based on the precise tenable condition.

  • PDF

Numerical investigation of Turbulent Flow in $270^{\circ}$ Bend using DES approaches (DES 모형을 이용한 270도 곡관 내 난류유동에 관한 수치해석)

  • Seo, Jeong-Sik;Shin, Jong-Keun;Hong, Seong-Ho;Choi, Young-Don
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.558-563
    • /
    • 2007
  • Detached Eddy Simulation(DES) is performed for turbulent flow of the $270^{\circ}$ bend at a Reynolds number of 56,690. A Fine grid generation is used near a wall in order to satisfy the wall boundary condition of y+<1. Turbulence models adopted for DES and Reynolds Average Navier Stokes(RANS) simulation are SST(Shear Stress Transfort) model. Solutions for both streamwise and circumferential velocity components are compared with the experimental data by Lee for $270^{\circ}$ bend and by Chang for $180^{\circ}$ bend.

  • PDF

Numerical simulation of two-phase flows in hydraulic jump using RANS model (RANS 모형을 이용한 자유도수 2상흐름 수치모의)

  • Choi, Seongwook;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.98-98
    • /
    • 2022
  • 도수는 사류가 상류로 천이되며 흐름이 불연속적으로 변하는 현상이다. 도수는 롤러와 벽 제트와 같은 흐름이 발생하는 영역으로 구분되며 큰 에너지 손실을 발생시키므로, 보나 댐과 같은 수리시설물에서는 에너지 소산을 위한 목적으로 도수를 발생시킬 수 있다. 도수구간 중 롤러 영역에서는 공기가 유입되어 복잡한 3차원 2상 흐름을 발생시키므로 공기방울의 거동에 대한 정밀한 모의는 매우 중요한 것으로 평가된다. 그러나 현실적으로 롤러 영역에서의 작은 공기방울까지 재현하는 것은 어려운 일이다. 본 연구에서는 k-ω SST 난류모형을 이용하여 수문 아래에서 발생하는 자유도수를 수치모의하고 연행된 공기량에 대한 특성을 검토하였다. 롤러 영역에서 격자의 해상도를 다르게 하여 도수구간 내 공기의 체적비와 공기방울의 크기 및 공기방울의 거동을 분석하였다. 실내 실험자료에 난류모형을 적용하고 그 결과와 비교하여 모의 결과의 적정성을 확인하였다. 또한 도수구간에서 공기방울 거동의 정밀한 모의가 평균흐름 및 난류량의 종방향 변화에 미치는 영향을 검토하였다.

  • PDF

A RANS CFD Based Approach for Resistance, Maneuvering and Seakeeping

  • Sasanapuri, Balasubramanyam;Wilson, Wesley;Rhee, Shin-Hyung
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.4
    • /
    • pp.55-71
    • /
    • 2007
  • The primary objective of this work is to develop methodologies for virtual model basin and to demonstrate the capabilities for generic multi-hull ship geometry. A computational fluid dynamics approach is used to simulate various model basin tests for steady resistance, maneuvering and seakeeping. For a catamaran hull configuration, the methodologies are used for solving these problems and the results are discussed. Computational results are compared with the results of a benchmarked potential flow theory method for calm water resistance.

Analysis of Overflow Characteristics around a Circular-Crested Weir by Using Numerical Model (수치모의를 이용한 원형위어의 월류흐름 특성 해석)

  • Kim, Dae-Geun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.2
    • /
    • pp.147-154
    • /
    • 2016
  • The present study used the hydrodynamic numerical model, with the Reynolds-averaged Navier-Stokes equations (RANS) as its governing equations, to analyze overflow characteristics such as the discharge coefficient of circular-crested weir and the flow velocity and pressure distribution of weir crest. The simulation results well reproduced the overflow characteristics of the overfall of circular-crested weir both qualitatively and quantitatively. As for the discharge coefficient, rational results were yielded by the discharge coefficient equation proposed by Hager(1985) in the $H_1/R_b<0.58$ and by the discharge coefficient equation proposed by Samani and Bagheri(2014) in the $H_1/R_b>0.58$, respectively. Because most existing discharge coefficient equations were developed by disregarding the effects of the approach velocity, when they are applied, it is necessary to evaluate the effects of the approach velocity on the overflow head beforehand.

Three-Dimensional Numerical Simulation of Intrusive Density Currents

  • An, Sangdo
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1223-1232
    • /
    • 2014
  • Density currents have been easily observed in environmental flows, for instance turbidity currents and pollutant plumes in the oceans and rivers. In this study, we explored the propagation dynamics of density currents using the FLOW-3D computational fluid dynamics code. The renormalization group (RNG) $k-{\varepsilon}$ scheme, a turbulence numerical technique, is employed in a Reynold-averaged Navier-Stokes framework (RANS). The numerical simulations focused on two different types of intrusive density flows: (1) propagating into a two-layer ambient fluid; (2) propagating into a linearly stratified fluid. In the study of intrusive density flows into a two-layer ambient fluid, intrusive speeds were compared with laboratory experiments and analytical solutions. The numerical model shows good quantitative agreement for predicting propagation speed of the density currents. We also numerically reproduced the effect of the ratio of current depth to the overall depth of fluid. The numerical model provided excellent agreement with the analytical values. It was also clearly demonstrated that RNG $k-{\varepsilon}$ scheme within RANS framework is able to accurately simulate the dynamics of density currents. Simulations intruding into a continuously stratified fluid with the various buoyancy frequencies are carried out. These simulations demonstrate that three different propagation patterns can be developed according to the value of $h_n/H$ : (1) underflows developed with $h_n/H=0$ ; (2) overflows developed when $h_n/H=1$ ; (3) intrusive interflow occurred with the condition of 0 < $h_n/H$ < 1.

RANS-LES Simulations of Scalar Mixing in Recessed Coaxial Injectors (RANS 및 LES를 이용한 리세스가 있는 동축분사기의 유동혼합에 대한 수치해석)

  • Park, Tae-Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.55-63
    • /
    • 2012
  • The turbulent flow characteristics in a coaxial injector were investigated by the nonlinear $k-{\varepsilon}-f_{\mu}$ model of Park et al.[1] and large eddy simulation (LES). In order to analyze the geometric effects on the scalar mixing for nonreacting variable-density flows, several recessed lengths and momentum flux ratios are selected at a constant Reynolds number. The nonlinear $k-{\varepsilon}-f_{\mu}$�� model proposed the meaningful characteristics for various momentum flux ratios and recess lengths. The LES results showed the changes of small-scale structures by the recess. When the inner jet was recessed, the development of turbulent kinetic energy became faster than that of non-recessed case. Also, the mixing characteristics were mainly influenced by the variation of shear rates, but the local mixing was changed by the adoption of recess.