• 제목/요약/키워드: RANS method

검색결과 210건 처리시간 0.025초

CFD를 이용한 KRISO 추진효율 향상 장치(K-duct)의 성능 해석 (CFD Analysis of Performance of KRISO Devices (K-DUCT) for Propulsion Efficiency Improvement)

  • 서성부
    • 한국해양공학회지
    • /
    • 제31권3호
    • /
    • pp.183-188
    • /
    • 2017
  • This paper provides numerical results for the estimation of the efficiency of KRISO energy saving devices in the design stage. A finite volume method is used to solve Reynolds averaged Navier-Stokes (RANS) equations, where the SST k-$\omega$ model is selected for turbulence closure. The propeller rotating motion is determined using a rigid body motion (RBM) scheme, which is called a sliding mesh technique. The numerical analysis focuses on predicting the power reduction by the designed KRISO devices (K-DUCT) under a self-propulsion condition. The present numerical results show good agreement with the available experimental data. Finally, it is concluded that CFD can be a useful method, along with model tests, for assessing the performance of energy saving devices for propulsion efficiency improvement.

U-FRPM 기법을 이용한 원심팬 광대역소음의 효율적 예측 (Efficient Prediction of Broadband Noise of a Centrifugal Fan Using U-FRPM Technique)

  • 허승;정철웅
    • 한국음향학회지
    • /
    • 제34권1호
    • /
    • pp.36-45
    • /
    • 2015
  • 유동광대역소음을 효율적으로 예측하기 위하여 통계적으로 난류를 재생하는 방법에 대한 많은 연구들이 최근에 진행되고 있다. 그 중에서도, FRPM(Fast Random Particle Mesh) 기법은 RANS(Reynolds-Averaged Navier-Stokes) 방정식 해석을 통해 도출된 정상상태 유동장의 난류 운동에너지와 소산 값을 이용하여 특정한 통계적 특성을 가지는 난류를 재생하는 기법으로서 유동광대역소음 문제 등에 성공적인 적용 예에 대해서 보고되고 있다. 하지만 기존의 FRPM 방법은 축류팬과 같이 축 대칭 특성을 갖는 기계의 경우 정상상태의 유동장을 기초로 광대역소음을 예측하는 문제에는 적용할 수 있으나, 원심팬과 같이 볼루트 영역으로 인하여 축 대칭이 성립되지 않는 기계류의 유동광대역소음에는 적용할 수 없다. 본 연구에서는 이러한 FRPM 기법을 확장하여, 원심팬에서 발생하는 광대역소음을 효율적으로 예측하기 위하여 비정상 RANS 방정식의 수치해와 연계하여 광대역소음원으로 고려되는 난류를 특정한 통계적 특성을 가지도록 재생할 수 있는 U-FRPM(Unsteady-FRPM) 기법을 제안하였다. 먼저 전산유체역학을 사용하여 RANS 방정식을 해석함으로써, 원심팬 주위의 비정상상태 유동장 정보를 도출하고, 음향상사법(Acoustic Analogy)을 기초로 도출된 유동소음원을 U-FRPM을 이용하여 모델링하였다. 모델링된 소음원은 경계요소법을 통해 구현되는 선형음향전파모델과 연계하여 수음점에서 광대역소음을 예측하는데 이용되었다. 예측된 결과와 실험결과의 비교를 통해 본 논문에서 제시한 방법의 유효성을 확인하였다.

Hybrid RANS and Potential Based Numerical Simulation for Self-Propulsion Performances of the Practical Container Ship

  • Kim, Jin;Kim, Kwang-Soo;Kim, Gun-Do;Park, Il-Ryong;Van, Suak-Ho
    • Journal of Ship and Ocean Technology
    • /
    • 제10권4호
    • /
    • pp.1-11
    • /
    • 2006
  • The finite volume based multi-block RANS code, WAVIS developed at MOERI is applied to the numerical self-propulsion test. WAVIS uses the cell-centered finite volume method for discretization of the governing equations. The realizable $k-{\epsilon}$ turbulence model with a wall function is employed for the turbulence closure. The free surface is captured with the two-phase level set method and body forces are used to model the effects of a propeller without resolving the detail blade flow. The propeller forces are obtained using an unsteady lifting surface method based on potential flow theory. The numerical procedure followed the self-propulsion model experiment based on the 1978 ITTC performance prediction method. The self-propulsion point is obtained iteratively through balancing the propeller thrust, the ship hull resistance and towing force that is correction for Reynolds number difference between the model and full scale. The unsteady lifting surface code is also iterated until the propeller induced velocity is converged in order to obtain the propeller force. The self-propulsion characteristics such as thrust deduction, wake fraction, propeller efficiency, and hull efficiency are compared with the experimental data of the practical container ship. The present paper shows that hybrid RANS and potential flow based numerical method is promising to predict the self-propulsion parameters of practical ships as a useful tool for the hull form and propeller design.

박용 프로펠러의 4상한 단독성능 계산 (Computation of Four Quadrant Performance for a Marine Propeller in Open Water)

  • 김형태;김정중
    • 대한조선학회논문집
    • /
    • 제38권4호
    • /
    • pp.1-10
    • /
    • 2001
  • 비 압축성 점성 유동에 대한 RANS 방정식의 수치 해법을 사용해서 4상한(four quadrant) 조건에서 작동하는 박용 프로펠러 주위의 난류 유동과 프로펠러 단독 성능을 계산하였다. 4상한 조건의 단독 성능에 대한 실험결과가 존재하는 모형 프로펠러 P4381에 대하여 계산된 유동은 다양한 조건에서 프로펠러에 발생하는 3차원 유동박리를 포함한 복잡한 점성유동 특성을 잘 보여주었으며, 계산된 프로펠러 추력과 토크는 실험에서 캐비테이션이 심하게 발생된 일부 경우를 제외하고는 실험 결과와 잘 일치하였다.

  • PDF

A numerical study on manoeuvrability of wind turbine installation vessel using OpenFOAM

  • Lee, Sungwook;Kim, Booki
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권3호
    • /
    • pp.466-477
    • /
    • 2015
  • In this study, a numerical prediction method on manoeuvrability of Wind Turbine Installation Vessel (WTIV) is presented. Planar Motion Mechanism (PMM) captive test for the bare hull of WTIV is carried out in the model basin and compared with the numerical results using RANS simulation based on Open-source Field Operation And Manipulation (OpenFOAM) calculation to validate the developed method. The manoeuvrability of WTIV with skeg and/or without skeg is investigated using the numerical approach along with the captive model test. In the numerical calculations, the dynamic stability index which indicates the course keeping ability is evaluated and compared for three different hull configurations i.e. bare hull and other two hulls with center skeg and twin skeg. This paper proves that the numerical approach using RANS simulation can be readily applied to estimate the manoeuvrability of WTIV at the initial design stage.

Analysis on Hydrodynamic Force Acting on a Catamaran at Low Speed Using RANS Numerical Method

  • Mai, Thi Loan;Nguyen, Tien Thua;Jeon, Myungjun;Yoon, Hyeon Kyu
    • 한국항해항만학회지
    • /
    • 제44권2호
    • /
    • pp.53-64
    • /
    • 2020
  • This paper discusses the hydrodynamic characteristics of a catamaran at low speed. In this study, the Delft 372 catamaran model was selected as the target hull to analyze the hydrodynamic characteristics by using the RANS (Reynold-Averaged Navier-Stokes) numerical method. First, the turbulence study and mesh independent study were conducted to select the appropriate method for numerical calculation. The numerical method for the CFD (Computational Fluid Dynamic) calculation was verified by comparing the hydrodynamic force with that obtained experimentally at high speed condition and it rendered a good agreement. Second, the virtual captive model test for a catamaran at low speed was conducted using the verified method. The drift test with drift angle 0-180 degrees was performed and the resulting hydrodynamic forces were compared with the trends of other ship types. Also, the pure rotating test and yaw rotating test proposed by Takashina, (1986) were conducted. The Fourier coefficients obtained from the measured hydrodynamic force were compared with those of other ship types. Conversely, pure sway test and pure yaw test also were simulated to obtain added mass coefficients. By analyzing these results, the hydrodynamic coefficients of the catamaran at low speed were estimated. Finally, the maneuvering simulation in low speed conditions was performed by using the estimated hydrodynamic coefficients.

HSVA 두 탱커 선형에 대한 점성유동 계산 (Numerical Calculation of Viscous Flows for Two HSVA Tankers)

  • 곽영기
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.138-146
    • /
    • 1999
  • The viscous flow around a ship hull is calculated by the use of RANS(Reynolds-averaged Navier-Stokes) solver. Reynolds stresses are midelled by using the k-${epsilon}$ turbulence model and the law is applied near the body. Body fitted corrdinates are introduced for the treatment of the complex boundary of the ship hull form and the governing equations in the physical domain transformed into ones in the computational domain. The transformed equations are numerically solved by an employment of FVM(Finite Volume Method). SIMPLE(Semi-Implicit Pressure Linked Equation) method is adopted in the calculation of pressure and the solution of the sidcretized equation is obtained by the line-by-line method with the use of TDMA(Tri-Diagonal Matrix Algorithme). To assure the proprietty of this computing method, HSVA tanker and Dyne hull are calculated ar both model and ship scale Reynolds number. Their reaults of pressure distributions on fore and aft body, axial velocity contours and transverse velocity velocity vectors and viscous resistance coefficients are compared with other's experiments and calculations.

  • PDF

RANS 방법을 이용한 파랑 중 선박운동 해석 (Numerical Prediction of Ship Motions in Wave using RANS Method)

  • 박일룡;김진;김유철;김광수;반석호;서성부
    • 대한조선학회논문집
    • /
    • 제50권4호
    • /
    • pp.232-239
    • /
    • 2013
  • This paper provides the structure of a Reynolds Averaged Navier-Stokes(RANS) based simulation method and its validation results for the ship motion problem. The motion information of the hull computed from the equations of motion is considered in the momentum equations as the relative fluid motions with respect to a non-inertial coordinates system. A finite volume method is used to solve the governing equations, while the free surface is captured by using a two-phase level-set method and the realizable k-${\varepsilon}$ model is used for turbulence closure. For the validation of the present numerical approach, the numerical results of the resistance and motion tests for DTMB 5415 at two ship speeds are compared against available experimental data.

수치해를 이용한 선박의 점성저항 해석 (Visous resistance analysis of a ship using numerical solutions)

  • 곽영기
    • 한국해양공학회지
    • /
    • 제11권2호
    • /
    • pp.100-106
    • /
    • 1997
  • Viscous flow around an actual ship is calculated by an use of RANS(Reynolds-averaged Navier-Stokes) solver. Reynolds stress is modelled by using k-$\varepsilon$ turbulence model and the law of wall is applied near the body. Body fitted coordinates are introduced for the treatment of the complex boundary of the ship hull form. The transformed equations in the computational domain are numerically solved by an employment of FVM(Finite Volume Method). SIMPLE(Semi-Implcit Pressure Linked Equation) method is adopted in the calculation of pressure and the solution of the disssssssscretized equation is obtained by the line-by-line method with the use of TDMA(Tri-Diagonal Matrix Algorithme). The subject ship model of actual calculation is 4,410 TEU class container carrier. For 4 geosim models the calculated viscous resistancce values are compared with the model test results and analyzed on their componentss. The resistance performance of an actual ship is predicted very resonably, so this mothod may be utilized as a design tool of hull form.

  • PDF

복합 CAA 방법과 FRPM 기법을 이용한 냉장고 얼음제조용 원심팬의 광대역 소음 예측 (Broadband Noise Prediction of the Ice-maker Centrifugal Fan in a Refrigerator Using Hybrid CAA Method and FRPM Technique)

  • 허승;김대환;정철웅
    • 한국음향학회지
    • /
    • 제31권6호
    • /
    • pp.391-398
    • /
    • 2012
  • 본 연구에서는 기존의 RANS(Reynolds Averaged Navier Stokes) 방정식을 이용하는 복합 CAA(Computational AeroAcoustics) 방법에 광대역 소음원 생성을 위한 FRPM(Fast Random Particle Mesh) 기법을 적용하여 원심팬 광대역 소음 예측을 수행하였다. 먼저, RANS 방정식을 이용하여 원심팬 주위의 유동장을 예측하여 주요한 소음원 영역을 추론하고, 추론된 소음원 영역에 FRPM 기법을 적용하여 통계적 특성을 만족하는 난류를 재생하였다. RANS 방정식으로부터 해석된 유동장과 FRPM 기법으로부터 재생된 유동장을 이용하여 합성한 유동장에 음향상사법(Acoustic Analogy)을 적용하여 원심팬의 소음원을 생성하였다. 생성된 원심팬의 소음원을 경계요소법(Boundary Element Method)으로 구현된 선형전파모델에 적용하여 원심팬의 광대역 소음을 예측하였다. 원심팬에 대한 소음 측정값과의 비교를 통하여 제안된 기법이 원심팬의 순음 소음 및 광대역 소음 예측에 효과적임을 확인하였다.