• Title/Summary/Keyword: RAMAN

Search Result 2,105, Processing Time 0.028 seconds

The pH Dependence of Metal Tetrakis (4-sulfonato-phenyl) porphine Structure Probed by Raman Spectroscopy

  • Yoon Minjoong;Chang Jae-Rim;Kim Dongho
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.1
    • /
    • pp.40-44
    • /
    • 1988
  • The pH dependence studies of Raman spectra are reported for water-soluble free-base, Zn, Co and Cu tetrakis (4-sulfonatophenyl) porphine in pH 4, pH 7 and pH 13.9 aqueous solution. For free base porphine, the substantial differences are found in absorption and Raman spectra between pH 4 and pH 7 or pH 10 aqueous solutions due to the protonation at low pH. For Zn and Co porphyrins, the hydrolysis equilibrium constants are obtained by spectrophotometric titration experiments. The consistent shifts in Raman frequencies are found at high pH due to the hydrolysis. For Cu porphyrins, instead of hydrolysis the aggregation effect is detected at high pH through the absorption and Raman studies.

Photoionization and Raman-scattered He II features in young planetary nebulae

  • Kim, Mi-Kyung;Lee, Hee-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.69.4-70
    • /
    • 2020
  • Raman-scattered He II features are known to be present in several young planetary nebulae (PNe) including NGC 7027, NGC 6302, IC 5117 and NGC 6790. These features provide a new spectroscopic window to probe both thick neutral regions and far UV regions near Lyman series. We carry out photoionization model calculations using 'CLOUDY' to explore He II emission strengths dependent on the physical conditions of the central star. The emission nebula is treated as a simple spherical shell with uniform density. It is found that detectable Raman-scattered He II are obtained for T∗ ~ 105 K in the presence of a thick neutral component. We present mock spectra exhibiting Raman He II features based on the photoionization calculations and compare them with observed data. We discuss effective strategies for searching young PNe with Raman-scattered He II emissivities.

  • PDF

STaRS Gen 2: Sejong Radiative Transfer through Raman and Rayleigh Scattering in Dusty Medium

  • Chang, Seok-Jun;Lee, Hee-Won;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.81.2-81.2
    • /
    • 2021
  • Emission features formed through Raman scattering with atomic hydrogen provide unique and crucial information to probe the distribution and kinematics of a thick neutral region illuminated by a strong far-ultraviolet radiation source. We introduce a new 3-dimensional Monte-Carlo code to describe the radiative transfer of line photons subject to Raman and Rayleigh scattering with atomic hydrogen. In our Sejong Radiative Transfer through Raman and Rayleigh Scattering (STaRS) code, the position, direction, wavelength, and polarization of each photon is traced until escape. The thick neutral scattering region is divided into multiple cells. Each cell is characterized by its velocity and density, which ensures flexibility of the code in analyzing Raman-scattered features formed in a neutral region with complicated kinematics and density distribution. We are continuously developing STaRS to adopt the absorption and scattering effect by dust. This presentation introduces STaRS and its current state and study.

  • PDF

A Study on Residual Stress Measurement Using Raman Spectroscopy (라만 분광법을 이용한 잔류응력 측정에 관한 연구)

  • Kang, Min-Sung;Kim, Sang-Young;Park, Soo;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.113-118
    • /
    • 2010
  • A straight pipe is used after complicated bending work in a mechanical system. In this work process, the plastic deformation of the pipe produces residual stress in the pipe. This residual stress significantly affects the behavior of pipe fracture. For this reason, residual stress must be evaluated. Measuring the residual stress of a U-shaped pipe is difficult with existing destructive and nondestructive measurement methods. In this paper, the residual stress of a U-shaped aluminum pipe (99.7% pure aluminum) was evaluated from the Raman shift by Raman spectroscopy and FEM(Finite Element Method, FEM) analysis. The results of the stiffness test by FEM analysis are compared with those by experiments. The analyzed results of the Raman spectra showed a similar tendency with the results of the FEM analysis with respect to the residual stress distributions in U-shaped pipes. Also, the results of the bending tests showed resemblance to each other.

Deep UV Raman Spectroscopic Study for the Standoff Detection of Chemical Warfare Agents from the Agent-Contaminated Ground Surface (지표면 화학작용제 비접촉 탐지를 위한 단자외선 라만분광법 연구)

  • Choi, Sun-Kyung;Jeong, Young-Su;Lee, Jae Hwan;Ha, Yeon-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.612-620
    • /
    • 2015
  • Short-range detection of chemical agents deposited on ground surface using a standoff Raman system employing a pulsed laser at 248 nm is described. Mounted in a vehicle such as an NBC reconnaissance vehicle, the system is protected against toxic chemicals. As most chemicals including chemical warfare agents have unique Raman spectra, the spectra can be used for detecting toxic chemicals contaminated on the ground. This article describes the design of the Raman spectroscopic system and its performance on several chemicals contaminated on asphalt, concrete, sand, etc.

The Thermal Dynamics of Fe Ion on the M-type Ba-ferrite (M형 Ba-Ferrite에서 Fe 이온의 열 진동에 관한 연구)

  • Sur, Jung-Chul;Ghim, Jin-Soo;Choi, Jong-Wan
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.1
    • /
    • pp.5-9
    • /
    • 2011
  • M$\ddot{o}$ssbauer and Raman spectrum studies have been carried out on the 2b-site Fe ion in the Ba-ferrite (M-type). The thermal dynamics of Fe ion was analyzed by M$\ddot{o}$ssbauer spectra at different angles between the $\gamma$-ray direction and c-axis. The vibration on the 2b-site was more active compare to other direction and had very strong intensity in the Raman spectrum.

Raman Spectroscopic Studies of $YBa_2Cu_3O_7$ Coated Conductors ($YBa_2Cu_3O_7$ Coated Conductors의 Raman 분광학 연구)

  • ChoiD Mi Kyeung;Mnh Nguyen Van;Bae J. S.;JoD William;Yang In-Sang;Ko Rock-kil;Ha Hong Soo;Park Chan
    • Progress in Superconductivity
    • /
    • v.6 no.2
    • /
    • pp.95-98
    • /
    • 2005
  • We present results of Raman spectroscopic studies of superconducting $YBa_2Cu_3O_7$ (YBCO) coated conductors. Raman scattering is used to characterize optical phonon modes, oxygen content, c-axis misalignment, and second phases of the YBCO coated conductors at a micro scale. A two-dimensional mapping of Raman spectra with transport properties has been performed to elucidate the effect of local propertied on current path and superconducting phase. The information taken from the local measurement will be useful for optimizing the process condition.

  • PDF

Raman O VI Profile Analysis of Accretion and Bipoloar Outflow in Sanduleak's Star

  • Heo, Jeong-Eun;Angeloni, Rodolfo;Di Mille, Francesco;Palma, Tali;Lee, Hee-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.58.4-59
    • /
    • 2017
  • Sanduleak's star is a suspected symbiotic binary located in the Large Magellanic Cloud. It is known that it has a giant jet with physical size ~ 14pc. Its spectrum shows two strong emission bands at $6825{\AA}$ and $7082{\AA}$, which are originated from Raman-scattering of O VI by neutral hydrogen atoms. We present the high-resolution spectrum of Sanudleak's star obtained with MIKE at the Magellan-Caly telescope to investigate the O VI emission region based on the profiles of the two Raman features. In this spectrum, it is noted that the Raman $6825{\AA}$ feature exhibits a single broad peak profile, which is in high contrast with a clear triple peak profile of the Raman $7082{\AA}$ feature. In our analysis we suggest that the O VI emission region consist of three main emission parts: an accretion disk, a bipolar outflow and an optically thick, compact component surrounding the white dwarf. By performing Monte Carlo simulation we constrain the representative column density of the H I scattering region N_HI ~1${\times}$10^23 cm^-2, which is in accordance with the observed flux ratio in the two Raman features F(6825)/F(7082) ~ 4.5.

  • PDF

Local transport properties of coated conductors by laser-scan imaging methods

  • Kim, Gracia;Jo, William;Nam, Dahyun;Cheong, Hyeonsik;Moon, Seoung Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.1-4
    • /
    • 2016
  • To observe the superconducting current and structural properties of high critical temperature ($T_c$) superconductors (HTS), we suggest the following imaging methods: Room temperature imaging (RTI) through thermal heating, low-temperature bolometric microscopy (LTBM) and Raman scattering imaging. RTI and LTBM images visualize thermal-electric voltages as different thermal gradients at room temperature (RT) and superconducting current dissipation at near-$T_c$, respectively. Using RTI, we can obtain structural information about the surface uniformity and positions of impurities. LTBM images show the flux flow in two dimensions as a function of the local critical currents. Raman imaging is transformed from Raman survey spectra in particular areas, and the Raman vibration modes can be combined. Raman imaging can quantify the vibration modes of the areas. Therefore, we demonstrate the spatial transport properties of superconducting materials by combining the results. In addition, this enables visualization of the effect of current flow on the distribution of impurities in a uniform superconducting crystalline material. These imaging methods facilitate direct examination of the local properties of superconducting materials and wires.

Design of Hybrid Optical Amplifiers for High Capacity Optical Transmission

  • Kim, Seung-Kwan;Chang, Sun-Hyok;Han, Jin-Soo;Chu, Moo-Jung
    • ETRI Journal
    • /
    • v.24 no.2
    • /
    • pp.81-96
    • /
    • 2002
  • This paper describes our design of a hybrid amplifier composed of a distributed Raman amplifier and erbium-doped fiber amplifiers for C- and L-bands. We characterize the distributed Raman amplifier by numerical simulation based on the experimentally measured Raman gain coefficient of an ordinary single mode fiber transmission line. In single channel amplification, the crosstalk caused by double Rayleigh scattering was independent of signal input power and simply given as a function of the Raman gain. The double Rayleigh scattering induced power penalty was less than 0.1 dB after 1000 km if the on-off Raman gain was below 21 dB. For multiple channel amplification, using commercially available pump laser diodes and fiber components, we determined and optimized the conditions of three-wavelength Raman pumping for an amplification bandwidth of 32 nm for C-band and 34 nm for L-band. After analyzing the conventional erbium-doped fiber amplifier analysis in C-band, we estimated the performance of the hybrid amplifier for long haul optical transmission. Compared with erbium-doped fiber amplifiers, the optical signal-to-noise ratio was calculated to be higher by more than 3 dB in the optical link using the designed hybrid amplifier.

  • PDF