• Title/Summary/Keyword: R2R sputtering

Search Result 349, Processing Time 0.026 seconds

Preparation of Precision Thin Film Resistor Sputtered by Magnetron Sputtering (IC용 초정밀 박막저항소자의 제조와 특성연구)

  • Ha, H.J.;Jang, D.J.;Moon, S.R.;Park, C.S.;Cho, J.S.;Park, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1236-1238
    • /
    • 1994
  • TiAlN thin films were prepared by a multi target r.f magnetron sputtering system under different conditions. We have investigated the resistivity and T.C.R. (Temperature Coefficient of Resistance) characteristics of TiAlN films deposited on $Al_2O_3$ and glass substrates by sputtering in an $Ar:N_2$ gas mixture. We used Al and Ti metal as Target Material and $Ar:N_2$ gas as working gas. We varied the partial pressure ratio of $N_2/Ar$ from 0.2/7 to 1.0/6.2 (SCCM). And the R.F power of Ti and Al Target also were varied as 160/240, 200/200 and 240/160(W). In this experiment, we can get the precision thin film resistor with a very low T.C.R. (Temperature Coefficient of Resistance) below 25 ppm ${\Omega}/^{\circ}C$.

  • PDF

Fabrication and Characterization of Sn1-xSixO2 Anode for Lithium Secondary Battery by R.F. Magnetron Sputtering Method (R.F. Magnetron Sputtering을 이용한 리튬이차전지 부극용 Sn1-xSixO2의 제조 및 특성)

  • Lee, Sang-Heon;Park, Keun-Tae;Son, Young-Guk
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.394-400
    • /
    • 2002
  • Tin oxide thin films doped with silicon as anodes for lithium secondary battery were fabricated by R. F. magnetron sputtering technique. The electrochemical results for lithium secondary battery anodes showed that addition of silicon decreases the oxidic state of tin, and, hence, reduced the irreversible capacity during the first discharge/charge cycle. The (110),(101),(211) planes were grown with increasing substrate temperatures. The reversible capacity of thin films fabricated in conditions of $300^{\circ}C$ substrate temperature and 7:3 $Ar:O_2$ ratio was 700 mAh/g.

The Fabrication of ITO Thin-film O3 Gas Sensors Using R.F. Magnetron Sputtering Method and their Characterization (R.F. Magnetron Sputtering법을 이용한 ITO 박막 오존 가스센서의 제조 및 특성)

  • Kwon, Jung-Bum;Jung, Kyoung-Keun;Lee, Dong-Su;Ha, Jo-Woong;Yoo, Kwang-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.840-845
    • /
    • 2002
  • As an ozone gas sensor, the semiconductor gas sensor which is cheap, portable and simple in use and has a high sensitivity and an excellent selectivity, has been known as an alternative. In the present study, ITO ($In_2O_3 95%,\;SnO_2$ 5%) thin films were deposited on the alumina substrate by using R.F. magnetron sputtering method. The substrate temperature was 300$^{\circ}C$ and 500$^{\circ}C$, respectively and then some specimens were annealed at 500$^{\circ}C$ for 4h in air. ITO gas-sensing films formed crystallines before and after annealing. As results of gas sensitivity measurements to an ozone gas, the sensor deposited at 300$^{\circ}C$ and then annealed has the highest sensitivity (sensible below 1 ppm). As the operating temperature increased gradually, the sensitivity decreased but the response time and stability improved.

Fabrication and electrochemical characterization of amorphous vanadium oxide thin films for thin film micro-battery by reactive r.f. sputtering (반응성 r.f. 스퍼터링에 의한 마이크로 박막 전지용 산화바나듐 박막의 제작 및 전기화학적 특성 평가)

  • 전은정;신영화;남상철;윤영수;조원일
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.42-47
    • /
    • 2000
  • The amorphous vanadium oxide thin films for thin-film rechargeable lithium batteries were fabricated by r.f. reactive sputtering at room temperature. As the experimental parameter, oxygen partial pressure was varied during sputtering. At high oxygen partial pressures(>30%), the as-deposited films, constant current charge/discharge characteristics were carried out in 1M $LiPF_6$, EC:DMC+1:1 liquid electrolyte using lithium metal as anode. The specific capacity of amorphous $V_2O_5$ after 200cycles of operation at room temperature was higher compared to crystalline $V_2O_5$. The amorphous vanadium oxide thin film and crystalline film showed about 60$\mu$Ah/$\textrm{cm}^2\mu\textrm{m}$ and about 38$\mu$Ah/$\textrm{cm}^2\mu\textrm{m}$, respectively. These results suggest that the battery capacity of the thin film vanadium oxide cathode strongly depends on the crystallinity.

  • PDF

Humidity Sensing Characteristics of TiO2 Thin Films Fabricated by R.F.Sputtering Method (R.F.스퍼터링법에 의해 제작된 TiO2 박막의 습도감지특성)

  • You, Do-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.974-979
    • /
    • 2013
  • $TiO_2$ thin films are fabricated using R.F.sputtering method. $TiO_2$ thin films are coated on $Al_2O_3$ substrate printed IDE(interdigitated electrode). Impedance of thin films decreases according to increase relative humidity and it increases according to decrease measuring frequency. When substrate temperature is room temperature, impedance of thin films is from 45.68[MHz] to 37.76[MHz] within the limits from 30[%RH] to 75[%RH] at 1[kHz]. Whereas when substrate temperature is 100[$^{\circ}C$], impedance of thin films is from 692[kHz] to 539[kHz] within the limits from 30[%RH] to 75[%RH] at 1[kHz]. Impedance variation of thin films is bigger in low frequency regions than in high frequency regions. When substrate temperature is 100[$^{\circ}C$], impedance of thin films is lower than that of room temperature.

The Residual Stress Effect on Microstructure and Optical Property of ZnO Films Produced by RF Sputtering (R.F Sputtering으로 제조한 ZnO박막의 미세구조와 광학적 특성에 미치는 잔류응력의 영향)

  • Ryu, Sang;Kim, Young-Man
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.4
    • /
    • pp.144-149
    • /
    • 2005
  • ZnO films were produced on the Si(100) and sapphire(0001) wafers by RF magnetron sputtering in terms of processing variables such as substrate temperature and RF power. The stress in films was obtained from the Stoney's formula using a laser scanning device. The stress levels in the films showed the range from $\~40$ MPa to $\~-1100$MPa depending on processing variables. The specimens were thermally cycled from R.T. to $250^{\circ}C$ to investigate the stress variation as a function of temperature. SEM was employed to characterize the microstructure of te films. As the substrate temperature increased, the film surface became rougher and the films showed coarser grains. The optical property o the films was studied by PL measurements. At the highest substrate temperature $800^{\circ}C$ the film exhibited sharper UV peaks unlike other conditions.

Crystallographic characteristics of ZnO/Glass thin films deposited by facing targets sputtering system (대향타겟식 스퍼터법으로 증착된 ZnO/Glass 박막의 결정학적 특성에 관한 연구)

  • 금민종;성하윤;손인환;김경환
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.367-372
    • /
    • 2000
  • ZnO thin films were deposited on amorphous slide glass and $SiO_2$/Si substrates by Facing Targets Sputtering method with sputtering current 0.1~0.8 A, working pressure 0.5~3 mTorr and substrate temperature R.T~$400^{\circ}C$. When the sputtering current was 0.4 A, working pressure was 0.5 mTorr and substrate temperature was 30$0^{\circ}C$, ${\Delta}{\Theta}_{50}$ value of ZnO/glass and ZnO/$SiO_2$/si thin film was $3.8^{\circ}$ and $2.98^{\circ}$, respectively. In these conditions, we knew that ZnO thin film were deposited with good c-axis orientation on amorphous slide glass by FTS system.

  • PDF

Effects of Sputtering Pressure on the Properties of BaTiO3 Films for High Energy Density Capacitors

  • Park, Sangshik
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.207-213
    • /
    • 2014
  • Flexible $BaTiO_3$ films as dielectric materials for high energy density capacitors were deposited on polyethylene terephthalate (PET) substrates by r.f. magnetron sputtering. The growth behavior, microstructure and electrical properties of the flexible $BaTiO_3$ films were dependent on the sputtering pressure during sputtering. The RMS roughness and crystallite size of the $BaTiO_3$ increased with increasing sputtering pressure. All $BaTiO_3$ films had an amorphous structure, regardless of the sputtering pressures, due to the low PET substrate temperature. The composition of films showed an atomic ratio (Ba:Ti:O) of 0.9:1.1:3. The electrical properties of the $BaTiO_3$ films were affected by the microstructure and roughness. The $BaTiO_3$ films prepared at 100 mTorr exhibited a dielectric constant of ~80 at 1 kHz and a leakage current of $10^{-8}A$ at 400 kV/cm. Also, films showed polarization of $8{\mu}C/cm^2$ at 100 kV/cm and remnant polarization ($P_r$) of $2{\mu}C/cm^2$. This suggests that sputter deposited flexible $BaTiO_3$ films are a promising dielectric that can be used in high energy density capacitors owing to their high dielectric constant, low leakage current and stable preparation by sputtering.