• Title/Summary/Keyword: R141b Clathrate

Search Result 2, Processing Time 0.015 seconds

An Experimental Study on the Performance of Cool Storage System using R141b Clathrate (R141b 포접화합물을 이용한 축냉시스템의 성능에 관한 실험적 연구)

  • Jung, I.S.;Kim, Y.G.;Lee, J.S.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.354-364
    • /
    • 1994
  • Experiments have carried out to investigate the effects of parameters, such as mass ratio of R141b-to-water, stirrer speed, brine inlet temperature, brine flowrate, and additives, on the performance of the cool storage system using R141b clathrate. The cool storage system in this experiment was composed of storage tank, refrigerator, and heater. The results show that the mass ratio of R141b-to-water, 1 : 3~1 : 3.5 gives the best performance and the stirring speed has optimum point as 600rpm. At this speed impeller Reynolds number is $1.01{\times}10^5$. The lower the inlet brine temperature and the highter the brine flowrate, the better performance. The addition of metal powder turned out to reduce the degree of supercooling. The supercooling reduction was proportional to the amount of the metal power. However when metal powder was added more than 0.1 wt%, there was no additional supercooling reduction. The surfactants shortened the time consumed for cool storage to the half of no surfactant added case.

  • PDF

Theoretical analysis on the cool storage system using clathrates (포접화합물을 이용한 축냉시스템에 대한 이론적 해석)

  • Chung, J.D.;Jung, I.S.;Yoo, H.;Lee, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.343-353
    • /
    • 1997
  • This paper presents a theoretical model for predicting transient behaviors during storage process of the cool storage system using the R141b clathrate. Introduction of the lumped capacitance method along with a brine reservoir having large thermal capacity yields a set of simplified energy equations. Based on the Arrhenius equation and the known experimental findings, the formation rate of clathrate for which the degree of subcooling is properly accounted is newly developed. An effective nondimensionalization of the model equations facilitates the closure of modeling as well as parametric study. Calculated results for a specific case not only simulate a typical pattern of temperautre variation in the tank successfully, but also agree reasonably well with available data. The effect of each characteristic parameter on the system performance is also investigated. It is revealed that the dominant among relevant parameters are the activation energy of reaction, the degree of subcoling and the initial mass fraction of refrigerant. Finally, the uncertainty associated with modeling of the shaft work variation appears to need further studies.

  • PDF